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Abstract

Real-world data often exhibits class-imbalanced distri-
butions, where a few classes (a.k.a. majority classes) oc-
cupy most instances and lots of classes (a.k.a. minority
classes) have few instances. Neural classification models
usually perform poorly on minority classes when training
on such imbalanced datasets. To improve the performance
on minority classes, existing methods typically re-balance
the data distribution at the class level, i.e., assigning higher
weights to minority classes and lower weights to majority
classes during the training process. However, we observe
that even the majority classes contain difficult instances to
learn. By reducing the weights of the majority classes, such
instances would become more difficult to learn and hurt
the overall performance consequently. To tackle this prob-
lem, we propose a novel instance-level re-balancing strat-
egy, which dynamically adjusts the sampling probabilities
of instances according to the instance difficulty. Here the
instance difficulty is measured based on the learning speed
of instance, which is inspired by the human-leaning pro-
cess (i.e., easier instances will be learned faster). We theo-
retically prove the correctness and convergence of our re-
sampling algorithm. Empirical experiments demonstrate
that our method significantly outperforms state-of-the-art
re-balancing methods on the class-imbalanced datasets.

1. Introduction
Over the years, the performance of the classification

has witnessed incredible progress on high-quality synthetic
datasets, e.g., CIFAR [40], ImageNet [36], MS-COCO [26].
However, the datasets in real-world applications often ex-
hibit imbalanced data distributions [27,30]. This imbalance
is intuitively reflected by the sizes of different classes. On
one hand, there are some classes that have a large number of
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(a) The Digit Distribution. (b) Accuracy of Evens.

Figure 1. Binary Classification on the Long-Taied MNIST. Fig. 1a
shows the digit and class distribution of the training data. Fig. 1b
shows the validation accuracy of digits in the even class. ”Others”
denotes the average accuracy of digit 0, 2, 4, 6. ”Normal” shows
the results of base model. ”Balance” shows the results of the class-
balance loss which reduces the weight of the majority class.

instances. We call them majority classes in this paper. On
the other hand, there are also some classes that have rarely
few instances. We call them minority classes in this pa-
per. Such class-imbalanced distributions pose critical chal-
lenges for neural classification models. Neural models per-
form with biases toward the majority classes when training
on such datasets [1,37]. Therefore, models usually perform
poorly on the minority classes [7].

The class-imbalanced classification problem has at-
tracted a lot of attention in the machine learning community
[13, 27]. Researchers have introduced a variety of strate-
gies to re-balance the data distribution when training the
model. The mainstream solutions are re-sampling and re-
weighting. Re-sampling methods directly adjust the train-
ing data by repeating the instances of minority classes and
removing some instances of majority classes [6, 16, 41, 44].
The re-weighting methods focus on the cost(e.g., loss) of
different classes, specifically paying more attention to the
minority classes’ cost and less on the majority classes [5,7].
In summary, existing methods typically consider and solve
the imbalance problem at the class level by adjusting the
observed class distribution.
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However, these class-level re-balancing strategies are
too coarse to distinguish the difference of instances. Even
within a majority class, there are some difficult instances
for classification models to learn. By reducing the weights
of the majority classes, such instances would be further ig-
nored and become more difficult to learn, which hurts the
models’ performance. Fig. 1 gives a support example by a
simulation experiment. A neural model needs to learn the
binary classification of odd and even numbers on the digi-
tal pictures of 0-9(digits 0,2,4,6,8 are labeled as even, digits
1,3,5,7,9 are labeled as odd), whose distribution is shown
as Fig. 1a. When testing the model on the validation set,
we find that pictures of digit 8 only have a 65% probability
to be right inferred as odd numbers. Compared with other
even digits, digit 8 is badly learned by the model. If we
adopt the class-balance loss [7] (i.e., an effective class-level
re-balancing method) in the training process, the weight of
the majority class(i.e., even) will be reduced. Compared
with the 1% drop of other even digits, the accuracy of digit
8 has dropped significantly. It indicates that digit 8 should
not be treated as same as other digits in the even class.

In the above case, adjusting the sub-class (i.e., digit) dis-
tribution seems to be an effective solution. However, in
most other cases, we do not know the labels of the sub-
classes, and we even can not determine whether sub-classes
exist. Moreover, even in a sub-class, the difficulty of differ-
ent instances is also different. Therefore, we need to con-
sider the weight adjustment at the instance level. At the
instance level, we can not assign weights like existing class-
level methods, because each instance usually appears only
once. Even worse, the model’s performance on the training
set also can not reflect the difficulty of instances, because
most instances in the training set can be correctly inferred
after training.

However, different instances are learned at different
speeds. Inspired by the process of human learning, the
speed and difficulty of learning are usually strongly cor-
related. By the study of instance learning speed in the
model’s training process, we find that the instance learning
process is directly affected by the data distribution. Specifi-
cally, instances have intermittent unlearning events during
the learning process, which are performed as loss incre-
ments. Instances from the minority classes or minority sub-
classes usually have more unlearning events in training. So
these instances are learned more slowly. Therefore, identi-
fying instances with slow learning speed as more difficult
instances and increasing their weights in learning can effec-
tively balance the data distribution.

Based on the above analyses, we design an instance dif-
ficulty model according to the learning speed and propose a
novel instance-level re-balancing strategy for training clas-
sification models. Specifically, we record the predictions of
each instance after each training epoch, and measure the in-

stance difficulty based on the prediction variations. Then
our method re-samples the data according to the instance
difficulty model by assigning higher weights to difficult in-
stances. In addition, we prove the correctness and conver-
gence of our re-sampling strategy theoretically.

In this paper, we conduct some empirical experiments to
show the multifaceted capabilities of our method. Specifi-
cally, the long-tailed classification experiments indicate that
our strategy outperforms some strong baselines on the class-
imbalanced datasets. Especially, we achieve new state-of-
the-art results on the long-tailed CIFAR-10/-100 for image
classification. The simulation experiments further verify
the data re-balancing ability of our method, which reduces
the imbalance ratio of labeled classes and unlabeled sub-
classes. And the generality experiments show the generality
of our methods on several different datasets.

The key contributions of this paper can be summarized
as follows: (1) We demonstrate the pitfalls of popular class-
level methods, and point out the importance of the instance-
level distribution adjustment. (2) We theoretically propose a
new difficulty definition for instances inspired by the learn-
ing speed, and we analyze the relationship of our difficulty
and data distribution. (3) We propose an instance-level re-
balancing strategy. It empirically performs well with theo-
retical proof.

2. Related Works

In this section, we briefly review two lines of related
works: (1) Class re-balancing strategies. (2) Difficulty-
sensitive methods.

2.1. Class Re-Balancing Strategies

From the intuitive experimental performance, the minor-
ity class performs poorly when the training data is class-
imbalanced. So it is effective to directly re-balance the class
contribution of the training data. To achieve this goal, there
are two implementations: re-sampling [4, 30, 44] and re-
weighting [5, 21, 38].

Re-sampling methods aim to achieve a more balanced
data distribution by adjusting the frequency of instances
during training. This adjustment is mainly at the class level,
including the following three types. Over-sampling in-
creases the instances of minority classes by repeating [6,11]
or interpolating [6, 12, 45]. Under-sampling [13, 16] re-
moves some instances of majority classes to decrease the
proportion of majority classes. And class-balance sampling
methods [24,28] not only increase the minority classes’ fre-
quency but also decrease the majority classes’.

Re-weighting methods balance the class distribution by
adjusting the weights for training instances in the loss func-
tion. Specifically, allocating high weights for minority
classes and low weights for majority classes. The core of
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this type of method is to determine the weights. One intu-
itive way is to use inverse class frequency as the weights of
different classes [42]. Such a tough setting does not perform
well in many situations, so [28,32] proposes some smoothed
versions of the inverse class frequency. Inspired by the ran-
dom covering problem, the class-balance loss models the
effective number, replacing the class frequency, for each
class [7].

Class-level adjustment is the relatively mainstream way
to solve the class-imbalance problem in classification.
However, the class-level approaches are too coarse, which
ignores the differences between instances in the same class.

Besides, it is worthy to introduce existing work that
has also explored other ways to solve the class-imbalanced
classification. With the idea of transferring knowledge
from majority classes to minority classes, transfer learn-
ing [2, 33, 43], two-stage training [5, 19] and dynamic cur-
riculum learning [41] significantly increase the performance
of class-imbalanced classification. Based on causal infer-
ence [34,35], removing the causal effect of bad gradient mo-
mentum can effectively relieve the bias to head class [39].

2.2. Difficulty-Sensitive Methods

Difficulty-sensitive methods adjust the data distribution
to balance the difficulty. The adjustments usually are im-
plemented by re-weighting, more difficult instances are as-
signed higher weights in training. So the core of these meth-
ods is to quantify the difficulty. Difficulty-sensitive methods
typically focus on instance level. The most popular works
quantify instances’ difficulty in terms of the losses incurred
by the model [8, 10, 25, 29]. Besides, meta-learning can
be used to find the conditional weights for instances [15].
While our method presents a novel difficulty inspired by the
learning speed. There is a strong connection between our
difficulty and data distribution, so our method is more ad-
vantageous in solving the class-imbalanced problem. More-
over, when the difficulty is defined, additional controls are
available beyond adjusting the data distribution. For exam-
ple, curriculum learning [3] and self-paced learning [18,23]
not only adjust the distribution of the data, but focus more
on the order in which the data appears from easy to difficult.

3. Our Method

In this section, we introduce our re-sampling method,
which re-balances the data distribution by instance-level
adjustments in training neural models for classification.
Specifically, we introduce our method in 3 steps: (1) Task
Formulation: we theoretically define the classification task
and the optimization object of the model; (2) Re-sampling
Framework: we introduce the role of our re-sampling
strategy in the training framework; (3) Instance Difficulty
Model: By theoretical analysis, we measure the difficulties

Algorithm 1 Re-Sampling

1: Input: dataset S, network Net, training times T
2: Initialize sampling weight (probability) ω ← { 1

|S|}
|S|

3: Initialize pi,0 ← { 1k , . . . } for each xi in S
4: for t in 1 to T do
5: S∗ ← Sample from S according to ω
6: Train Net by using S∗
7: for xi in S do
8: pi,t ← Net(xi)
9: Di,t ← Difficulty(pi,0, . . . , pi,t)

10: end for
11: calculate new ω by D
12: end for

of learning instances, which is the key of our method to as-
sign weights for instances.

3.1. Task Formulation

Without loss of generality, a classification task with k
classes are formed in this section. Let S := {zi =
(xi, yi) : 1 ≤ i ≤ N} be the training data with N instances,
where zi denotes the ith instance, xi denotes its features and
yi ∈ {1, . . . , k} denotes its class label. Then a neural model
Net is adopted to fit the mapping of features to class labels.
Suppose the final layer of Net is softmax , which normal-
izes the output of Net as a probability distribution for pre-
diction. Specifically, we denote pi = Net(xi) as the pre-
diction distribution of the instance zi. argmax (pi) = yi in-
dicates that the instance zi are correctly inferred by Net . To
achieve higher inference accuracy, a suitable loss functionL
is adopted to help us learn the parameters θ of Net . Assume
that L(θ,S) =

∑N
i=1 L(θ, zi) is twice-differentiable [22].

The learning goal is to minimize the total loss L(θ,S) by
changing θ of Net .

3.2. Re-sampling Framework

The model optimizes the parameters by training on the
dataset. However, even if the optimization method re-
mains unchanged, the data distribution will greatly affect
the learning of the model. Our method only adjusts the
data distribution used in training to optimize the model. The
overall training framework with our re-sampling method is
shown in Algorithm 1.

The core of our re-sampling method is calculating the
sampling weights for all instances. Different from the ex-
isting class-level methods, the probability of sampling each
instance in our method can be different, even in the same
class. With different difficulty models and weight calcula-
tion methods, the performance of final trained model is dif-
ferent. Inspired by the idea that difficult instances should be
paid more attention to. In our method, we simply calculate
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the sampling weights as

wi,t =
Di,t∑N
j=1 Dj,t

, (1)

where wi,t determines the sampling probability of the in-
stance zi after the tth iteration. Our sampling method dy-
namically adjusts the sampling weight of each instance ac-
cording to its current difficulty. So the difficulty model is
the core of our method, which directly determines the sam-
pling probability of each instance. Next, we will introduce
it in detail.

3.3. Instance Difficulty Modeling

In this section, we introduce the instance difficulty model
of our method through 3 steps: (1) Theoretical Analysis: To
design the difficulty model, we make a theoretical analysis
for the learning process of the instance. (2) Model Design:
we design the instance difficulty model based on the analy-
sis. (3) Characteristics: we explain our difficulty model in
vector space and prove its convergence.

3.3.1 Theoretical Analysis

In this section, we analyze the reasons why an instance be-
comes difficult to learn. When using gradient descent to
update θ, the goal of updates is to make L(θ,S) smaller.
According to the Taylor Expansion, when θ → θ0, L(θ,S)
can be approximated as

L(θ,S) = L(θ0,S) + L′(θ0,S)(θ − θ0), (2)

where L′(θ0,S) =
∑N

i=1 L′(θ0, zi). To get the fastest de-
scent speed, △θ = (θ − θ0) = −ηL′(θ0,S), where η de-
notes the learning rate.

Suppose that the parameters change from θ0 to θ1 after
an update, and satisfies θ1 = θ0 − ηL′(θ0,S). For a spe-
cific instance z, its loss will be changed after the parameter
update. The variation which is L(θ1, z) − L(θ0, z) can be
estimated as

△Lz = −η⟨L′(θ0, z),L′(θ0,S)⟩, (3)
where ⟨·, ·⟩ denotes the inner product. The loss of the z
will rise if ⟨L′(θ0, z),L′(θ0,S⟩ < 0. We call that z is un-
learned in this update. In particular, we can construct two
subsets of S, which are the assistance set Az := {a : a ∈
S, ⟨L′(θ0, z),L′(θ0, a)⟩ > 0} and the hindrance set Hz :=
{r : r ∈ S, ⟨L′(θ0, z),L′(θ0, r)⟩ < 0}. The decline of in-
stances’ loss indicates the degree to which the instances are
learned by the model. In the process of learning z, it is ob-
vious that the instances inAz provide the assistance but the
instances in Hz create the hindrance. Moreover, when the
weight of any instance in Az is decreased or the weight of
any instance in Hz is increased, the loss of z will become
more difficult to reduce. It indicates that the difficulty of
instances is affected by the data distribution.

As a naive idea, the instance difficulty for learning can
be evaluated by all inner products of every two gradients.

However, this naive method is too slow because of complex
calculations. In fact, because of the twice-differentiable as-
sumption, the gradient changes little when the model pa-
rameters are slightly perturbed. Between two adjacent it-
erations, the prediction variations of the model have similar
trends when△θ is slight. Therefore, prediction variations in
the last iteration can be used to estimate the variations in the
current iteration. Specifically, we denote Net t as the model
which has been trained t iterations, and pi,t = Net t(xi) as
the prediction distribution of Net t for instance zi. At the
t+1 training iteration, we take the variation between pi,t−1

and pi,t to estimate the learning results whether zi tends to
be learned or unlearned. If an instance is often unlearned, it
will be difficult to be learned by the model. Obviously, such
an instance will be learned more easily when its weight is
increased.

3.3.2 Model Design

Following our analysis, to measure the difficulty, we esti-
mate the prediction variations in the learning direction and
the unlearning direction. And then we design the instance
difficulty model. Specifically, for a given instance zi, its
difficulty after T iterations is estimated as

Di,T =
c +

∑T
t=1 dui,t

c +
∑T

t=1 dl i,t
, (4)

where c is the prior parameter of instance difficulty, dui,t

denotes the prediction variation on the unlearning direction
after t iterations, dl i,t denotes the prediction variation on
the learning direction. In particular, all instances have the
same c, which regulates the sensitivity of difficulty to pre-
diction variations. In Eq. (4), the numerator records the ac-
cumulation of the unlearning trends, and the denominator
records the accumulation of the learning trends. For any in-
stances zi and zj , Di,t > Dj,t means zi is more difficult
than zj so far, after t iterations have been updated. Consis-
tent with the priori, all difficulties are treated as the same
before the first iteration, since Di,0 = 1 for any instance zi.

According to the different calculation methods of dui,t

and dl i,t, we can get different difficulty models. In this
paper, we define them based on the PSI (a.k.a. Population
Stability Index [17, 20]), which is a well defined index to
measure the distance between distributions. Regardless of
learning direction, the prediction variation between pi,t−1

and pi,t is the distance that

di,t =

k∑
j=1

(pji,t − pji,t−1) ln(
pji,t

pji,t−1

), (5)

where pji,t denotes the probability that Net t predicts the
class of zi as j. Then we take into account the learning
direction. Specifically, pyi

i,t − pyi

i,t−1 > 0 indicates learning
and pyi

i,t − pyi

i,t−1 < 0 indicates unlearning. Moreover, there
are similar settings in other dimensions of the probability
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distribution but the conclusion is opposite. Therefore, we
define dui,t and dl i,t as

dui,t = min(pyi

i,t − pyi

i,t−1, 0) ln(
pyi

i,t

pyi

i,t−1

)

+

k∑
j=1,j ̸=yi

max(pji,t − pji,t−1, 0) ln(
pji,t

pji,t−1

),

(6)

and

dl i,t = max(pyi

i,t − pyi

i,t−1, 0) ln(
pyi

i,t

pyi

i,t−1

)

+

k∑
j=1,j ̸=yi

min(pji,t − pji,t−1, 0) ln(
pji,t

pji,t−1

),

(7)

which satisfy that di,t = dui,t + dl i,t.
Whenever the model is iterated after multiple batches of

training such as an epoch, our method needs to infer the in-
stances of training data once to record the prediction of the
current model. By all records, i.e., (pi,0, pi,1 . . . ), the in-
stance difficulty is calculated to adjust the sampling weight
of instance zi. Here pi,0 can be the prediction before train-
ing or initialized as uniform distribution.

3.3.3 Model Characteristics

In this section, we discuss the characteristics of our instance
difficulty model(i.e., Eq. (4)), which directly controls the
sampling weights. Our instance difficulty has a intuitive
explanation in the vector space. Di,T is the slope of the
difficulty vector D⃗i,T = c⃗ +

∑T
t=1 d⃗i,t, where c⃗ = (c, c)

and d⃗i,t = (dui,t, dl i,t). When our method tries to update
the sampling weight, a new difficulty vector will be calcu-
lated for each instance. As illustrated in Fig. 2, the difficulty
space is composed of the unlearning trend and the learning
trend. If the model tends to unlearn an instance, the direc-
tion of its difficulty vector will closely point to the unlearn-
ing trend. Similarly, if the model tends to learn an instance,
the direction of its difficulty vector will closely point to the
learning trend.

In particular, for a single difficulty vector of an instance,
its direction may be deviated due to the error of trend pre-
diction. In our method, the overall trend summation makes
the trend estimation more accurate. Generally, such accu-
mulation can reduce the error in the direction of a single
vector. In addition, the final results of our difficulty will be
converged with the convergence of models. In an ideal sit-
uation, we prove that || ⃗Di,t−1|| = ||D⃗i,t|| when t → ∞.
The specific proof are presented in the Appendix.

4. Experiments
In this section, we show the ability of our method by ex-

periments, comparing with baselines introduced in Sec. 4.1.
Then experiments are divided into three parts, according to

Figure 2. Instance Difficulty in Vector Space. Instance difficulty
defined in Eq. (4) is presented by colors. The final difficulty is
accumulated by period sliced difficulty vectors(grey solid arrow)
calculated in different iterations.

different purposes: (1) Long-tail classification experiments
test the performance of our method under different imbal-
ance ratios. (2) Simulation experiments illustrate the re-
balancing ability of our method. (3) Generality experiments
demonstrate the generality of our method.

4.1. Baselines

This section introduces the baseline methods used in the
experiments.

• Class-Balance Loss: A class-level re-balancing
method which adjusts the weights of classes based on
effective numbers of classes. [7]. The effective num-
ber is related to the sample size of the category and
regulated by the hyperparameter of the method.

• Focal Loss: An instance-level difficulty-sensitive
method which assigns higher weights to instances in
terms of losses. Every instance may have different
weights [25].

• TDE: A state-of-the-art method that removes the accu-
mulated preference of the majority class according to
the causal effect in inference [39]. In particular, TDE
does not adjust the data distribution during training.

Especially, we adopt different base models for different ex-
periments. The baselines do not change the base model it-
self. They are a kind of additional adjustment method to
optimize the learning of the given base model. Specifically,
we adopt the ResNet [14] with different layers, the Multi-
layer Perceptron [9], and the logistic regression [31] as the
base models in experiments.

4.2. Long-Tailed Classification Experiments

The intention of our method is to solve the class-
imbalanced problem in classification. This section presents
the performance of our method to solve the long-tailed clas-
sification problem with different imbalance ratios.
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Table 1. Accuracy % on Long-Tailed CIFAR-10/-100 with Different Imbalance Ratios. All methods use the same network structure (the
ResNet-32 backbone and a multi-head decision classifier).

Dataset Name Long-tailed CIFAR 10 Long-tailed CIFAR 100

Imbalance Ratio 1 20 50 100 1 20 50 100
Base Model 92.1 83.9 78.3 72.2 70.6 53.0 45.0 40.6
Focal Loss 92.2 83.8 78.2 72.6 70.8 53.1 45.6 41.0
Class-Balance Loss 92.1 84.1 79.1 74.3 70.6 54.9 46.1 41.1
Our Method 93.8 85.5 80.2 75.0 71.5 54.5 48.0 42.3

TDE 91.1 84.7 82.1 79.1 67.8 54.5 48.5 43.5
TDE + Our Method 93.5 87.2 84.5 79.6 70.5 55.9 50.3 44.9

4.2.1 Experimental Settings

To verify the superiority of our instance-level strategy, we
conduct extensive studies on long-tailed CIFAR datasets [7]
with various imbalance ratios. Specifically, the training in-
stances of each class are reduced, according to an exponen-
tial function n = niµ

i, where i is the class index, ni is the
original number of class i and µ ∈ (0, 1). And the overall
imbalance ratio is denoted as nmax/nmin.

4.2.2 Performance of Different Imbalance Ratios

To show the performance of our method for solving class-
imbalanced classification, we adopt experiments on long-
tailed CIFAR-10/-100 with different imbalance ratios. As
shown in Tab. 1, we can see that: (1) Training with dif-
ferent methods can differently improve the accuracy of the
base model. (2) The improvement of the focal loss is not
obvious, which indicates difficulty in terms of losses can
not effectively solve the class-imbalanced classification. (3)
Under the uniform class distribution (the imbalance ratio is
1), Class-Balance Loss performs the same as Base Model.
Because it does not adjust any weight of class when the
class distribution has been balanced. Under the imbalanced
class distribution, performances of Class-Balance Loss are
improved, because the distribution is re-balanced on class
level. (4) Focus on the Focal Loss, Class-Balance Loss and
our method, in the case of ensuring the model is the same,
the final accuracy can reflect the performance of the differ-
ent distribution adjustments. Our method outperforms the
focal loss and class-balance loss at most situations, which
shows the effectiveness of our strategy for re-balancing the
distribution. (5) TDE only works on class-imbalanced situ-
ations, because TDE is based on causal analysis under the
class-imbalanced assumption. Moreover, the effect of TDE
is more obvious when the imbalance ratio is higher. Under
a higher imbalance ratio, the model usually has a more ob-
vious preference for majority classes. So the correction by
TDE is larger and more accurate. (6) Compared with TDE,
our method works better when the imbalance ratios are low.

Table 2. Accuracy % on Long-Tailed CIFAR100 with Imbalance
Ratio 100. The network is the same as that in Tab. 1. Class-
Balance(More Minority) is another instance of Class-Balance
Loss, which assigns much more weights for minority classes.

Methods Majority Minority Overall

Base Model 54.1 9.0 40.6
Focal Loss 54.7 9.1 41.0
Class-Balance Loss 53.5 11.0 41.1
Class-Balance(More Minority) 49.3 12.2 38.2
Our Method 56.2 9.9 42.3

However, since TDE does not modify the data distribution,
our method can be integrated with TDE. After fusion, our
method can further improve the performance of TDE.

4.2.3 Performance on Majority and Minority Classes

To study the model performance in detail, we observe the
performance on majority and minority classes in the exper-
iment of long-tailed CIFAR-100 whose imbalance ratio is
100. Specifically, following the previous study [39], the 30
classes with the least number of instances are defined as the
minority classes. They only accounted for 2.9% of all data
in training. Then we denote the rest as the majority classes.

As shown in Tab. 2, different strategies have their own
characteristics when improving the base model. We can
see that: (1) Focal Loss mainly improves the performance
on majority classes, since Focal Loss is not forced to as-
sign higher weights to minority classes. This indicates that
only adopting the values of losses to determine the difficul-
ties of samples is hard for the model to perceive the mi-
nority classes. (2) Class-Balance Loss improves the per-
formance on minority classes but slightly deteriorates the
performance on majority classes. As a typical class-level
method, it directly adjusts the weights of classes. As ex-
pected, the performance on the majority classes deterio-
rates because their weights are reduced. On the contrary,
the weights of the minority classes are increased, so the
performance on the minority classes is improved. Since
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Table 3. Accuracy % on Long-Tailed MNIST with Imbalance Ratio 100 for Simulation Binary Classification. All methods use the same
network structure. The Base Model is the Multilayer Perceptron. Two ratio columns present the class imbalance ratio(i.e., ”Class Ratio”)
and the sub-class imbalance ratio(i.e. ”Sub-Class Ratio”). Especially, the values in these two columns are the imbalance ratios that
calculated after re-balancing. The ”Major” and ”Minor” represent the majority sub-classes and the minority sub-classes within a class.

Methods Class
Ratio

Sub-Class
Ratio

Overall Even (Majority Class) Odd (Minority Class)

Overall Major Minor Overall Major Minor

Base Model 1.7 100.0 86.04 90.95 98.88 85.54 81.28 96.92 70.09
Class-Balance Loss 1.2 69.6 86.19 89.77 98.73 83.66 82.72 97.11 72.44

Our Approach 1.4 37.3 87.99 92.33 99.08 87.73 83.78 97.41 77.43

the performance improvement on minority classes is greater
than the performance loss of majority ones, the overall per-
formance is improved. (3) Class Balance(More Minority)
performs better on minority classes, since it assigns higher
weights for minority classes. However, lower weights for
majority classes result in severe performance degradation
on majority classes, thus the final performance is even less
than the base model which does not adjust the data distri-
bution. (4) Our method can effectively improve both ma-
jority and minority classes. Because our method pays more
attention to the instances that are really hard to learn. Dif-
ficult instances in the majority classes are strengthened, so
the performance on majority classes is improved. Although
the improvement in the minority classes is not as good as
Class-Balance Loss, our approach has a better performance
overall. Compared with Focal Loss, our method can bet-
ter perceive the importance of minority classes and is more
effective in improving the majority classes.

4.3. Simulation Experiments

In this section, we show the performance of our method
for unlabeled imbalanced sub-classes. Moreover, we verify
the re-balancing ability of our method and analyze why our
method can re-balance the distribution of classes and unla-
beled sub-classes.

4.3.1 Experimental Settings

The simulation experiments are carried out by the task of
the binary classification on Long-Tailed MNIST. The two
classes are even and odd. Original MNIST is a popular
dataset of handwritten digit recognition. We constructed a
long-tailed version of MNIST by under-sampling accord-
ing to the construction method of Long-tailed CIFAR [7].
From the perspective of the class level, the distribution is
long-tailed, since the even class is much larger than the odd
class. From the perspective of the sub-class (digit) level,
the sub-class distribution in each class obeys the long-tailed
either. In the training process, the model knows the class
labels, but not the sub-class labels. For a more specific in-
troduction and settings, please refer to the Appendix.

4.3.2 Performance on Imbalanced Sub-Classes

To observe the performance of our method on unlabeled
sub-classes, we conduct the simulation experiment, whose
class distribution and unlabeled sub-class distribution are
imbalanced. The overall results are summarized in Tab. 3.
As an illustration, the majority sub-classes of the even class
are composed of the digit 0 and 2, while the minority sub-
classes are composed of the numbers 4,6,8. The majority
sub-classes of the odd class are composed of 1 and 3, while
the minority sub-classes are composed of 5,7,9.

As shown in Tab. 3, we can see that: (1) On the class
level, the performance is consistent with the results in
Tab. 1, which leads to a similar conclusion. (2) The perfor-
mance on minority sub-classes is much smaller than that on
majority sub-classes, which indicates that the imbalanced
issue also exists in unlabeled sub-classes. (3) The class-
balance Loss performs more poorly on minority sub-classes
of the majority class(i.e., Even). Because re-balancing the
distribution on the class level leads to lower weights for
such minority sub-classes. (4) Our method has a more sig-
nificant improvement on minority sub-classes, compared to
the class-level adjustment, which indicates the superiority
of instance-level adjustments. The difficulty defined by our
method can perceive the problems caused by the imbal-
anced distribution of unlabeled sub-classes.

In addition, we recalculated the current imbalance ratio
based on the weighted result of instances. The results (two
ratio columns in Tab. 3) show that our method effectively
reduces the imbalance ratio for both labeled classes and un-
labeled sub-classes.

4.3.3 Analysis for Re-Balancing the Class Distribution

Because of the connection between our difficulty model and
the data distribution, our method can re-balance the distri-
bution of the classes or even the unlabeled sub-classes. In
this section, we verify this conclusion by simulation exper-
iments. Specifically, we record the unlearning frequency of
different classes and sub-classes, and visualize the relation-
ship between unlearning frequency and difficulty.
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Figure 3. Unlearning Frequency of Classes and Sub-Classes. E
denotes the even class. O denotes the odd class.
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Figure 4. Loss and Difficulty of Instances in Training. ”Easy” is
unlearned with 10% probability, ”Normal” is unlearned with 20%
probability, ”Hard” is unlearned with 40% probability.

As the analysis in Sec. 3.3, the instance sometimes is
unlearned during the learning process. Fig. 3 presents the
unlearning frequency of different classes and sub-classes.
We can see that rarer classes or sub-classes typically have
a higher unlearning frequency. It indicates there is a strong
correlation between the data distribution and the unlearning
frequency. Then we conduct simulations for instances with
different unlearning probabilities (see the Appendix for spe-
cific settings). Fig. 4 presents the variation of loss and diffi-
culty for three types of instances which are unlearned with
different probabilities. We can see that our instance diffi-
culty is consistent with the unlearning frequency. Instances
with higher unlearning frequency will receive higher diffi-
culties and higher weights. Therefore, our method can re-
balance the distribution of classes or sub-classes.

4.4. Generality Experiments

To demonstrate the generality of our method, we per-
form our method on various classification datasets. Specif-
ically, the datasets include ten tiny classification datasets
in the UCI machine learning repository, whose results are
shown in Tab. 4. The results show that our method can
steadily improve the performance of the base models on
tiny datasets. Compared with the class-level method, our
instance-level method is more effective. The detailed infor-
mation of datasets is introduced in the Appendix. More-
over, we also evaluate our method on a large-scale dataset
named iNaturalist 2019, our method also is effective to im-
prove the performance of models. Specifically, our method

Table 4. Accuracy % on 10 Datasets. All methods use the same
network structure. The ”Base” here is the Logistic Regression.
”CB” denotes the class re-balance loss [7].

Methods Base CB Ours

Sonar 83.3 83.3 85.7
Balance 91.2 92.0 92.8
CMC 59.0 60.0 62.4
Ecoli 82.4 85.3 85.3
Glass 34.9 44.2 53.5
Heart 72.2 72.2 72.2
Iris 93.3 93.3 96.7

Robot 93.5 94.0 94.1
Seeds 97.6 97.6 97.6
Wine 41.7 41.7 41.7

Average 74.9 76.4 78.2

improves the accuracy of the 50-layer ResNet from 70.19%
to 71.08% and the accuracy of the 101-layer ResNet from
72.84% to 73.32%. The completed experimental results are
shown in the Appendix. In conclusion, these results illus-
trate the generality of our method.

5. Conclusions and Future Works
In this paper, we studied the class-imbalanced classifi-

cation problem from a more general instance-level view.
Inspired by the idea that learning speed reflects the learn-
ing difficulty, we designed an instance difficulty model and
presented a novel instance-level re-sampling strategy. Our
method can re-balance the distribution of classes and unla-
beled sub-classes. Moreover, our method achieved state-of-
the-art results on the long-tailed benchmarks. In particular,
this paper analyzed the relationship between the instance
difficulty and the data distribution. Following our analysis,
variant methods can be designed. The method of estimat-
ing the difficulty in this paper needs more computation, and
the performance would be destroyed when there are wrong
labeled instances. For such limitations, we presented more
progress of our method and ideas for future works in the Ap-
pendix. In future works, we hope to design more efficient
and robust variants for class-imbalanced classification.
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