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Abstract

Image-text matching, as a fundamental task, bridges the
gap between vision and language. The key of this task is
to accurately measure similarity between these two modal-
ities. Prior work measuring this similarity mainly based
on matched fragments (i.e., word/region with high rele-
vance), while underestimating or even ignoring the effect
of mismatched fragments (i.e., word/region with low rel-
evance), e.g., via a typical LeaklyReLU or ReLU opera-
tion that forces negative scores close or exact to zero in
attention. This work argues that mismatched textual frag-
ments, which contain rich mismatching clues, are also cru-
cial for image-text matching. We thereby propose a novel
Negative-Aware Attention Framework (NAAF), which ex-
plicitly exploits both the positive effect of matched frag-
ments and the negative effect of mismatched fragments to
jointly infer image-text similarity. NAAF (1) delicately de-
signs an iterative optimization method to maximally mine
the mismatched fragments, facilitating more discrimina-
tive and robust negative effects, and (2) devises the two-
branch matching mechanism to precisely calculate similar-
ity/dissimilarity degrees for matched/mismatched fragments
with different masks. Extensive experiments on two bench-
mark datasets, i.e., Flickr30K and MSCOCO, demonstrate
the superior effectiveness of our NAAF, achieving state-of-
the-art performance. Code will be released at: https:
//github.com/CrossmodalGroup/NAAF.

1. Introduction

Image-text matching, which devotes to bridging the se-
mantic gap between these two heterogeneous modalities, is
a fundamental task in computer vision (CV) and natural lan-
guage processing (NLP). This matching task aims to search
images for a given textual description or find texts w.r.t. an
image query. The critical challenge of image-text match-
ing lies in accurately learning semantic correspondence be-
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Figure 1. Motivation of the negative-aware attention. (a) Exist-
ing methods mainly find matched fragments, e.g., “boys”, “trees”,
to compute image-text (I-T) similarity, while the effect of mis-
matched fragments, e.g., “football”, is weakened or ignored, by the
typical LeaklyReL.U or ReLU. (b) shows the false-positive prob-
lem of existing methods, where the I-T pair can still obtain a high
similarity, contributed by most matched fragments, and may rank
quite the top as correct. (c) In our method, both mismatched and
matched fragments are mined to produce negative and positive ef-
fects, respectively, thereby downgrading the false-positive pairs.

tween images and texts to measure their similarity.

Generally, there are two paradigms among existing
image-text matching approaches [2, 7, 27]. The first one
tends to perform global-level matching, i.e., finding the se-
mantic correspondence between the full text and the whole
image [3,9,24,43]. They typically project the holistic im-
ages and texts into a common latent space and then match
the two modalities. The second paradigm focuses on exam-
ining local-level matching, i.e., matching between salient
regions in images and words in texts [19,23]. Local-level
matching takes into account fine-grained semantic corre-
spondence between images and texts.

Recently, attention-based local-level matching has been
proposed and quickly becomes the mainstream in image-
text matching. SCAN [23], as well as its various variants
], is a representative method of this
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kind. The key idea is to discover all word-region alignments
by attending to relevant fragments w.r.t. each query frag-
ment from another modality. In summary, matched frag-
ments (i.e., word-region pairs with high relevance scores)
will contribute a lot to the final image-text similarity, while
the effect of mismatched fragments (i.e., word-region pairs
with low relevance scores) will be weakened or even erased,
e.g., via a typical LeakyReL.U or ReLU that forces negative
scores close or exact to zero during the attention process
[2,5,7,13,16,23,26,27,39]. Although achieving promising
performance, these methods completely ignore the crucial
role of mismatched textual fragments in proving image-text
mismatching, since they describe contents not in the image.
(In fact, images usually contain more background object
regions, thus we principally focus on mismatched textual
fragments, i.e., words.)

Consequently, existing methods, which mainly find the
matched fragments while underestimating or neglecting the
effect of mismatched ones, will be inevitably prone to pro-
duce false-positive matching. Namely, image-text pairs
containing many matched fragments but a few mismatched
textual fragments (directly indicating image-text mismatch-
ing), can still obtain the high similarity and may rank quite
the top as correct, which is certainly not a satisfying re-
sult (Fig. 1(b)). Therefore, we argue that a reasonable
matching framework should simultaneously consider two
aspects, i.e., the overall matching score of an image-text
pair is determined not only by the positive effect of matched
fragments, but also by the negative effect of mismatched
ones (e.g., words not mentioned in the image will probably
downgrade the overall matching score). For example, as
shown in Fig. 1(c), by further emphasizing and mining the
negative effect of mismatched fragments w.r.t. “football”,
it will be easy to eliminate this false-positive pair.

To this end, we propose a novel negative-aware atten-
tion framework which, for the first time to our knowledge,
explicitly considers both positively matched and negatively
mismatched fragments to jointly measure image-text sim-
ilarity (Fig. 1(a)). Different from conventional matching
mechanisms that focus on matched fragments unilaterally,
our attention framework can effectively mine mismatched
textual fragments and use them to accurately reflect how
dissimilar the two modalities are. In this sense, we call it
negative-aware attention framework (NAAF). As illustrated
in Fig. 2, NAAF consists of two modules. (1) We devise
a two-branch matching to solve the lack utilization of mis-
matched fragments, which contains the negative and posi-
tive attention with different masks, one to precisely calcu-
late the dissimilarity degrees of mismatched fragments, and
the other the similarity degrees of matched ones. (2) We
propose a new iterative optimization method to explicitly
model and mine the mismatched fragments. Concretely,
based on the similarity distributions of mismatched and

matched fragments, we first adaptively learn the optimal
boundary between them by minimizing the penalty prob-
ability of their error overlaps, which can theoretically guar-
antee the mining accuracy. Then, the learned boundary is
integrated into the attention matching process to optimize
more discriminative similarity distributions. Such iterative
optimizing forcedly separates these two types of distribu-
tions as far as possible, enabling maximally mining the mis-
matched textual fragments. In this way, NAAF not only fo-
cuses on matched fragments but also discriminates subtle
mismatched ones across modalities towards more accurate
image-text matching.

The major contributions of this work are summarized as
follows. 1) We propose a novel two-branch matching mod-
ule, which jointly utilizes both mismatched and matched
textual fragments to make accurate image-text matching.
To the best of our knowledge, this is the first framework that
explicitly exploits both negative effects of mismatched clues
and positive effects of matched clues in image-text match-
ing. 2) We propose a novel iterative optimization method
with negative mining strategies, which can explicitly drive
more negative effects of mismatched fragments, and theo-
retically guarantee the mining accuracy, yielding more com-
prehensive and interpretable image-text similarity measure-
ment. 3) Extensive experiments on two benchmarks, i.e.,
Flickr30K and MS-COCO, show that NAAF outperforms
compared methods. Analyses also well demonstrate the su-
periority and reasonableness of our method.

2. Related Work

Recently, image-text matching has been dramatically de-
veloped, where there are general two research lines: global-
level matching, which tends to learn the global alignment,
i.e., representing the image or text as a holistic feature to
measure similarity; and local-level matching, which focuses
on the fine-grained alignment between local fragments, i.e.,
inferring the overall image-text similarity by the relevance
of all word-region pairs. NAAF belongs to the latter one.

Global-level matching methods. A general solution in
this field is to learn semantic alignment in image-text pairs
by mapping them into a shared space and optimizing via
a ranking loss. A line of researches focus on different opti-
mization functions [8,9,21,36,41]. The famous hinge-based
triplet loss forces aligned image-text pairs have a higher
similarity than misaligned ones [18,21]. Faghri et al. [9]
improve the performance of triplet loss by attending to the
hardest misaligned pairs. Wang et al. [36] consider the ex-
ternal constraint loss that preserves the neighborhood struc-
ture in a single modality. Recently, some novel optimization
designs are proposed, such as the ladder loss [45], the poly-
nomial loss [40], and the adaptive offline quintuplet loss [4].
In addition to hash search for efficiency [6,28,46], many ap-
proaches focus on designing specific learning networks for
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improving search accuracy [!1,20,24,29,32]. For exam-
ple, recent work focuses on the aggregation strategy for the
holistic presentation of image or text, where a promising
way is the generalized pooling operator [3].

Local-level matching methods. Learning semantic
alignment between image regions and text words is pop-
ular in image-text matching [15, 17, 19]. Karpathy et
al. [19] first attempt to optimize the most similar region-
word pairs for selecting matched semantics. Lots of works
[2,5,7,13,16,23,26,27,37-39,42,44] are devoted to discov-
ering full region-word alignments. One of the most typical
approaches is attention-based SCAN [23] that attends to the
specific regions/words fragments to filter out unmatched in-
formation for enhancing semantic alignment learning.

A line of methods [14,27,37,39] focus on mining more
information in images and texts to further enhance the asso-
ciation of matched fragments, such as regional position em-
bedding [39] and object relationship information [37]. Shi
et al. [33] use the knowledge graph of semantic concepts to
improve image representation. Another branch works focus
on designing more sophisticated models [2,5,7,26,27,44],
such as the focal attention to eliminate irrelevant fragments
[26], the dual-path recurrent neural network that considers
the relation between image and objects like the relation be-
tween text and words [5], and the iterative recurrent atten-
tion for serial multiple-step matching [2]. Recently, Liu et
al. [27] and Diao et al. [ 7] further employ the graph neural
network to enhance the meaningful alignments. Nonethe-
less, they mainly concentrate on maximizing the effect of
matched (i.e. aligned) fragments, while underestimating or
neglecting the clue role of mismatched ones. In contrast, we
explicitly mine the mismatched textual fragments to further
exploit both types of clues for joint similarity inference.

3. Method

The overall framework of our proposed NAAF is de-
picted in Fig. 2. We first extract features of image regions
and text words, and then perform negative-aware attention
to measure image-text similarity, using both negative and
positive effects. In this section, we first introduce the pro-
posed negative-aware attention and elaborate on its modules
in Sec. 3.1. Then, we describe the objective function and
feature extraction in Sec. 3.2 and Sec. 3.3, respectively.

Notations. Formally, for an image-text pair (U, V'), the
text is represented as words’ textual features U = {u;|i €
[1,m],u; € R}, and the image is represented as regions’
visual features V = {v;|j € [1,n],v; € R?}, where m and
n denote the number of words and regions, respectively; d
is the dimension of feature representation.

3.1. Negative-aware Attention

Given an image-text pair, it may contain rich matched
and mismatched fragments. Our goal is to take full ad-

vantage of the two types of clues to achieve more accurate
matching performance. There are mainly two modules in
our NAAF framework, which are 1) Discriminative Mis-
match Mining (Sec. 3.1.1), aiming to explicitly model and
maximally mine mismatched fragments, by minimizing the
penalty probability of error overlaps between the matched
and mismatched similarity distributions in the training pro-
cess; and 2) Neg-Pos Branch Matching (Sec. 3.1.2), aim-
ing to precisely calculate the effects of both negative mis-
matches and positive matches for jointly inferring similar-
ity via the designed two-branch matching, i.e., negative and
positive attention branches. Next, we will introduce these
two modules in detail.

3.1.1 Discriminative Mismatch Mining

Different from existing methods that do not explore the pre-
cise similarity boundary of mismatched and matched frag-
ments, which implicitly use empirical fixed zero to distin-
guish them, i.e., via the typical ReLU or LeakyReLU oper-
ation [23,44], we expect to explicitly and adaptively model
the similarity distributions of mismatched and matched
fragments, aiming to maximally separate them to achieve
effective mismatched fragments mining.

To this end, in the training process, regarding the mis-
matched and matched word-region fragment pairs, we first
sample their similarity degrees as:

e = [51:52583,.-.,58; 5., (1)
+ + + +
St=s7,s3,89,...,87,...], 2)

where S, and S are defined as as the sets of mismatched
word-region similarity s; and matched word-region simi-
larity sj‘, respectively. Note that both sets S,  and S,j are
dynamically updated with index k in training. As a mat-
ter of fact, it is challenging for sampling s; and s, as no
matching annotations exist for fragment-level word-region
pairs. We solve this problem by the delicately designed
sampling strategy, which is described in Sec. 3.1.3.
According to the sampled two sets .S, and S ', the mis-
matched and matched probability distributions about simi-
larity s of word-region fragment pairs can be modeled as:
 s—np)? - (s—uj)z]

— 2o ot
@ =cmme "A@)= grme X
' + o+

where (p1, ,0, ) and (p), 0, ) are the mean and standard
deviation of the two distributions respectively. Assume that
there is a boundary ¢ to distinguish whether the similar-
ity of a word-region is mismatched or matched. As il-
lustrated in Fig. 2, the distinction errors are twofold, i.e.,
truly mismatched fragments are distinguished as matched
ones (depicted as F; in Fig. 2) and vice versa (depicted
as E» in Fig. 2). We target to learn an optimal boundary
that can maximally distinguish the mismatched fragments,
while also decrease the error probability, i.e., F; and FEo,
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Figure 2. An overview of the proposed framework NAAF, containing two major modules for explicitly exploiting both negatively mis-
matched and positively matched textual fragments to jointly infer image-text similarity. (I) discriminative mismatch mining that focuses on

maximally separating the similarity distribution of mismatched frag

ments from the matched one, while also learning the adaptive boundary

between these two distributions, enabling mismatched clues to yield more robust negative effects. (2) Neg-Pos branch matching introduces
different masks to precisely calculate the positive and negative effects of the two types of fragments to measure the overall similarity.

as much as possible to ensure the accuracy of identification.
Hence, the optimal boundary learning can be written as a
minimum weighted error probability problem:

mtin af;roo fi (s)ds + ffoo fi (s)ds,

3
t>0, 3)

S.t.

where ¢t is the decision variable; « is the penalty parameter
for distinguishing errors of mismatched fragments; £ > 0 is
a sufficient condition for matched fragments.

To find the minimum point of Eq.(3), we search the zero
point of its first derivative, truncate at ¢ > 0 (using []; =
max(-,0)), and obtain the optimal solution as:

(85" — 4L B5) — 85)/(280)]

+
O

ty “4)

),

+2
k

where 8 = (07)% — (07,)% 8% = 2(uf oy, " — pjo
and B§ = (o3 11,)* = (0 i) + 2(0 0 )* In =%

There are two points worth highlighting. (1) Dur-
ing the training process, this explicit boundary ¢, firstly
learned from the similarity distributions of mismatched and
matched fragments, will then be integrated into the atten-
tion matching process to adjust more discriminative simi-
larity distributions, which creates an iterative optimization.
In this way, the distribution of mismatched fragments will
be maximally separated from the distribution of matched
fragments, where the mismatched fragments can yield more
robust negative effects. Thus mismatched fragments can
also be exploited as meaningful clues to accurately measure
image-text similarity. (2) At the end of training, we expect
the adaptive learning boundary ¢; can simultaneously guar-
antee the maximum mining of mismatched fragments and

k
T -
k

avoid misjudgment of matched fragments causing perfor-
mance degradation. Towards to make the learning boundary
converge to this state that enjoys better mining accuracy,
we give the theoretical condition that adjusting the initial
penalty parameter « satisfies:
sk

—2

2(6;2—6

* % )}71

«

= o} [0 exp )
where 85 = (o (uf — ) /oy = 3(oi " = o)1 = (uf —np )%,
and the specific derivation is in the supplementary material.

3.1.2 Neg-Pos Branch Matching

In contrast to most existing works that merely focus on
strengthening the attention of matched fragments to asso-
ciate cross-modal shared semantics while simply weaken-
ing and ignoring mismatched fragments. Our two-branch
framework can simultaneously focus on mismatched and
matched fragments in the image-text pair, by resorting to
different attention masks to precisely measure their effects
in the negative and positive attention, respectively. Con-
cretely, we first compute the semantic relevance scores be-
tween all words and regions as:

T
uivj . .
$ij = ———,4 € [1,m],j € [1,n] 6)
Y s

Negative attention. In this branch, we aim to accurately
and effectively utilize the mismatched fragments, making
them valuable to downgrade the overall similarity of mis-
matching image-text pairs. Fragments in the textual modal-
ity that have no matched image regions are considered as
mismatched. Moreover, compared with adaptively learned
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relevance boundary ¢, the maximum cross-modal similar-
ity between a fragment and another modality’s all fragments
reflects the degree of whether it is mismatched or matched.
Therefore, we employ the max-pooling similarity between
each word fragment w;,7 € [1,m] and all image regions
{v;} J=1

si = mfx({sij = tr}j—1), (7)

Thus, the negative effect of i-th word in the image-text
pair (U, V), i.e., how dissimilar it is, can be measured as:

Sneg =s; ® Maskneg(si) (8)

3

where Mask,,.4(-) is the mask that when the input is nega-
tive, it equals 1, otherwise it is 0; ® denotes dot-product.

Moreover, to make a more accurate negative effect mea-
surement, we also consider the intra-semantic relationship
of word fragments within the text, since the fragments with
similar semantics should have the same matching relation-
ship. Hence, the intra-modal propagation of each word’s
matching degree is conducted as:

zul

slewmtmsl,stwjl"tm SOftmaX)\({H eA
wi ||

| } =1 )

©))
where wi""® denotes the semantic relationship between i-
th and [- th word fragments, A is a scaling factor; the en-
hanced §; is used to replace the s; in Eq.(8) in the inference.

Positive attention. This branch aims to measure how
similar the image-text pair is, where there are two aspects
to be considered. We firstly focus on attending to the cross-
modal shared semantics, i.e., aggregating matched image
regions with respect to each query word, to measure the
similarity degree of matched fragments. Concretely, the
inter-modal attention weights are calculated by

—tY). (10)

where w;7"“" is the semantic relationship between word w;
and 1mage region v;. Mask,,s(-) denotes the mask that
when the input is positive, it equals the input, otherwise it
is —oo, in which the attention weight of irrelevant image
regions, i.e., s;; — tx < 0, will be erased to zero.

For i-th word, the corresponding shared semantics in the
image can be aggregated as: o; = )7, wi?"*"v;. Based
on this weighted image feature, the 51m11ar1ty of ul is mea-
sured as sf = w;OF /(JJwil|||9:]])-

In addition, the high relevance scores s;; between words
and regions also reflect the degree of similarity, thus we
also compute the weighted similarity based on the corre-
sponding relevance scores with respect to the word u; as:

ro_ n relev . .
S; =21 Wi; *’s;;, where the relevance weights are cal-

wiMe" = softmax  ({Maskpos (i

inter ;

culated by wy, j"le” = softmaxy({3i;}7_,), in which we have

5ij = [sij]4 /1) 2Dima 53513

. Therefore, the positive effect

of the matched fragments in the image-text pair (U, V') can
be measured as:
P05 = o 47 an

K3
Finally, the similarity of image-text (U, V') can be jointly
determined by the negative and positive effects as:

1 m
S - neg poa 12

3.1.3 Sampling and Updating Strategy

In this section, we describe how to sample and update simi-
larities of mismatched and matched word-region fragment
pairs in Eq.(1) and Eq.(2), respectively. Although there
is no matching ground-truth about word-region pairs, we
solve this by allocating the pseudo word-region similarity
via image-text instance-level matching annotations.

Concretely, the devised sampling is built on the simple
fact: 1) the truly aligned text of an image should be totally
matched to the image, that is, for the textual words, there
is at least one matched region in the correct image. Thus,
we sample the maximum similarity between word u;,i €
[1,m] and image regions {v , from the correct image
as:

st = max({v; Fui /(o luilD =), (13)
and 2) the misaligned text is mismatched to the incorrect
image. In fact, with respect to the misaligned word, all re-
gions in the incorrect image are mismatched with it. Yet, we
argue that the maximum value of mismatched word-region
similarities offers the greatest distinction ability, as it re-
veals their upper bound. Therefore, for word u;, i € [1,m)]
with image regions {UJ_ j=1 from the incorrect image, we
also sample the largest one as:

S; = me({U]uiT/(Hv{||Hui||)}§":1)7 (14)

where the update is for each text in a mini-batch. More-
over, to sample the accurate pseudo word-region similarity
labels, we devise to decide whether to update s;” and s; at
each sampling time, which is based on the correctness of
the calculated similarity ranking. Note that sampling and
updating operations are performed only in training.

3.2. Objective Function

Following existing approaches [15, 18, 19], the objec-
tive function adopted in this paper for end-to-end train-
ing is the bi-directional triplet ranking loss, which con-
strains the similarity of aligned image-text pairs to be higher
than that of misaligned ones by a fixed margin. More-
over, we concentrate on optimizing hardest misaligned sam-
ples that yield highest loss. Given the ground-truth image-
text pair (U, V) and its all umatched pairs (U, V') and
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(U', V), the hardest misaligned samples are selected by
V' = argmaxp,.yv S(U,p) and U =argmaxg+y S(q, V).
Thus, the objective function is written as:

L :Z [V_S(U7V)+S(U’V/)]++[V_S(UvV)"'S(U,?V)} +, (15)
(CAD)

where + is a margin hyperparameter, [z] = max(z,0).
3.3. Feature Extraction

Visual Representation. Given an image V/, it is repre-
sented as a set of salient regions features [v1, va, . .., v,] by
using the advantage of bottom-up attention [1]. The salient
objects and other regions are detected utilizing a Faster-
RCNN pretrained on Visual Genome [22], in which we se-
lect the top-K (K=36) proposals. Then, the detected regions
are extracted by mean-pooled convolutional features by pre-
trained ResNet-101 [12]. A fully connected layer is em-
ployed to map each region to a 1024-dimensional feature.
Textual Representation. Given a text U which comprises
of m words, we encode each word into a 1024-dimensional
vector as [u1,us, ..., Un]. Each word is first represented
as a one-hot encoding, and embed into a pre-trained GloVe
vector [30]. Then the vectors are fed into a bi-directional
gated recurrent unit (BiGRU) to integrate the forward and
backward contextual information. The final word represen-
tation u; is the average of bi-directional hidden states.

4. Experiments
4.1. Dataset and Implementation Details

Datasets. To validate effectiveness, we conduct exten-
sive experiments on two benchmark datasets. Flickr30K
[31] totally has 31,000 images and 155,000 sentences. Fol-
lowing the same protocol in [19], Flickr30K is split into
1,000 test images, 1,000 validation images, and 29,000
training images. MS-COCO [25] contains 123,287 images
and 616,435 sentences, and we split it into 5,000 test im-
ages, 5000 validation images, and 113,287 training images
[18]. The results of MS-COCO is tested on averaging over
5-folds of 1K test images and on the full 5K test images.

Evaluation Metrics. We adopt the commonly used Re-
call at K (R@K, K=1, 5, 10) and rSum. R@K means the
percentage of ground truth in the retrieved top-K lists. rSum
is the sum of all R@K in both image-to-text and text-to-
image, reflecting the overall matching performance.

Implementation Details. All experiments are con-
ducted on an NVIDIA GeForce RTX 3090Ti GPU. The
Adam optimizer is employed for model optimization, with
0.0005 as the initial learning rate and decaying by 10% ev-
ery 10 epochs. The mini-batch size is set to 128 and 256
for Flickr30K and MSCOCO respectively, with 20 training
epoches on both datasets. The feature dimension d is set
to 1,024. The scaling parameter A is set to 20. The initial

Image-to-Text Text-to-Image
R@] R@5 R@10|R@]1 R@5 R@10

Methods rSum

SCANCc18)[231 |67.4 90.3 95.8 [48.6 77.7 85.2 |465.0
BFANci9)pe] |68.1 914 - |50.8 784 - |288.7
CVSEc20351 |70.5 88.0 92.7 |54.7 822 88.6 |476.7
DPRNNc209y 51 [ 70.2 91.6 95.8 |55.5 81.3 88.2 [482.6
SGMc20y371 | 71.8 91.7 95.5 |53.5 79.6 86.5 |478.6
IMRAMCc20)[21 | 74.1 93.0 96.6 |53.9 794 87.2 |484.2
GSMN(20)[271 | 76.4 943 97.3 |57.4 82.3 89.0 |496.8
SMFEAc2n 10| 73.7 92.5 96.1 |54.7 82.1 88.4 [487.5
SHANc2n i1 |74.6 93.5 969 553 81.3 88.4 |490.0
VSEoco can 31 |76.5 94.2 97.7 [56.4 83.4 89.9 |498.1
SGRAFc2n 71 |77.8 94.1 97.4 |585 83.0 88.8 |499.6

NAAF(ours) [81.9 96.1 98.3 |61.0 853 90.6 (513.2

Table 1. Quantitative evaluation results on Flickr30K test set. The
bests are in bold.

penalty parameter « is set to 2.0, which will be investigated
at Sec. 4.3. The adjusting epoch in training is selected as
15. The margin hyperparameter + is selected as 0.2.

4.2. Comparison Results

We compare our proposed NAAF with the recent state-
of-the-art models on the two benchmarks. We belong to
the local level paradigm. Same with the compared models,
we report the ensemble results by averaging two models’
similarity, i.e., whether using the intra-modal relationship.
Tab.1 shows the quantitative results of our NAAF approach
on Flickr30K. Our NAAF outperforms state-of-the-arts sig-
nificantly on all evaluation metrics. Specifically, we ob-
tain relative 13.6% improvement on rSum, where the R@1
gains 4.1% and 2.5% improvement at two retrieval direc-
tions, respectively. Moreover, compared with the typical
SCAN which our model builds on its basis, NAAF obtains
14.5% and 12.4% on R@1 at two directions, respectively,
and largely improves rSum by relative 48.2%.

The experimental results on the larger and complicated
MS-COCO are shown in Tab.2. We can see that our NAAF
outperforms state-of-the-arts in terms of most evaluation
metrics. Compared with SHAN and SMFEA, NAAF gains
relative improvements of 7.4% and 9.6% on rSum, respec-
tively, and we can achieve competitive results with the state-
of-the-arts, getting near 3% improvements on rSum. For
the full 5K test datasets, we have nearly 1% improvement
in terms of R@1, which is the main concern in practical ap-
plications. Compared with the baseline model SCAN, our
approach surpasses all its evaluation performance, with rel-
ative 8.5% and 3.9% improvements on R@1 in two direc-
tions, respectively. The improvements show that the effec-
tiveness of our proposed framework for maximally mining
the negative effect of mismatched fragments, and further
verifies that jointly using the negative and positive effects
of mismatched and matched fragments can obtain more ac-
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Figure 3. Visualization of the discriminative mismatch mining process with different penalty weights o, where the mismatched word-
region (w-r) similarity distribution is explicitly separated, making mismatched fragments yield more robust negative effects. The larger «,
the stronger the discriminative ability of mismatch mining, but also the greater discrimination errors for matched fragments. « is adjusted

to o™ via Eq.5 in the later stage of training, which guarantees the learning boundary converge to the state with high mining accuracy.

Image-to-Text Text-to-Image

Image-to-Text Text-to-Image

Methods  |r@TR@5 R@I0[R@T R@5 R@I0|" "™ Methods R@I R@5 R@I0[R@1 R@5 R@10
1K Test Set Penalty Parameter for Mismatch Errors

SCANc18) (231 |72.7 94.8 98.4 |58.8 88.4 94.8 |507.9 initial @« = 1.0 78.0 95.7 98.0 |58.9 839 89.8

BFANc19y261  |74.9 952 - |594 884 - (3179 initial &« = 3.0 78.9 953 97.8 [59.3 84.1 89.9

PVSEc19)341  |69.2 91.6 96.6 |55.2 86.5 93.7 |492.8 initial o = 2.0* 79.6 96.3 98.3 |59.3 83.9 90.2

CVSEc20)1351  |69.2 93.3 97.5 |55.7 86.9 93.8 |496.4 I w/o adjusting to «*| 78.7 954 97.6 |59.3 83.4 89.7

DPRNNc20)51 [75.3 95.8 98.6 [62.5 89.7 95.1 |517.0

SGMc¢20) [37] 734 93.8 97.8 |57.5 87.3 94.3 |504.1
IMRAMCc20y[2] [76.7 95.6 98.5 |61.7 89.1 95.0 |516.6
GSMNc20) 271 |78.4 96.4 98.6 [63.3 90.1 95.7 |522.5
SMFEAc2n 1101 | 75.1 954 98.3 |62.5 90.1 96.2 |517.6
SHANCc21)[16] [76.8 96.3 98.7 |{62.6 89.6 95.8 |519.8
VSEococ2n 31 [78.5 96.0 98.7 [61.7 90.3 95.6 |520.8
SGRAFc2n(71 |79.6 96.2 98.5 |63.2 90.7 96.1 (524.3
NAAF(ours) 80.5 96.5 98.8 |64.1 90.7 96.5 |527.2
5K Test Set
SCAN c18)231 [50.4 82.2 90.0 |{38.6 69.3 80.4 |410.9
PVSE c19y341 |45.2 74.3 84.5|32.4 63.0 75.0 |374.3
SGM 2001371 [50.0 79.3 87.9 |35.3 64.9 76.5 |393.9
IMRAM c20)[21[53.7 83.2 91.0 [39.7 69.1 79.8 |415.5
SMFEA canrio)54.2 - 899 (419 -  83.7 |269.7
SGRAFc2n( [57.8 - 91.6 |41.9 -  81.3 |272.6
NAAF(ours) 58.9 85.2 92.0 |42.5 70.9 81.4 |430.9

Table 2. Quantitative evaluation results on MS-COCO 1K and 5K
test set. The bests are in bold. Because some works did not report
5K results, we compare the reported ones.

curate image-text similarity.

4.3. Ablation Study

We conduct extensive ablation studies on Flickr30K to
verify the effectiveness of each component of our NAAF.

The impact of different penalty parameters. In our
model, the most sensitive and important parameter is the
penalty weight o, which determines the ability to mine mis-
matched fragments in training. Note that o should be a

Sampling and Updating
batchsize 32 76.0 95.0 97.5 |57.8 83.6 89.7
batchsize 64 78.3 96.0 98.3 |589 84.1 89.8
batchsize 128* 79.6 96.3 98.3 159.3 83.9 90.2
1 w/o up. neg. samp. | 76.3 94.2 97.2 |59.5 83.6 90.1

Table 3. Ablation studies about the penalty parameter (Sec.3.1.1)
and the sampling and updating strategy (Sec.3.1.3), which are ob-
tained on Flickr30K. Underlines mean the best model, marked .

trade-off between the mining strength of mismatched clues
and the misclassification of matched clues. 1) We investi-
gate the matching performance with setting « as 1.0, 2.0
and 3.0, all of which are defaultly equipped with a*. As
shown in Tab.3, it can be seen that NAAF achieves better
performance when oo = 2.0. The higher one (o = 3.0) has
a better performance than the lower one (a = 1.0), where
we visualize the mismatch mining of different «v in training
in Fig.3. 2) If we omit the adjusting of «, it suffers per-
formance degradation, since many matched clues are mis-
judged, which verifies the necessity of a*.

The impact of sampling and updating strategy. The
sampling of matched and mismatched word-region similar-
ity is crucial to NAAF. In Tab.3, 1) For the batch size, which
relates to the number of updates, we find that a larger batch
size brings better performance, as the amount of updated
data determines the accuracy of the distribution modeling.
2) For the sampling of mismatched words without using
maximum (upper) similarity, the performance is severely
degraded, verifying the maximum sampling of mismatched
word-region has more effective constraint effect.
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Query Q1:A man wearing a reflective
T e‘t' vest and holds up pamphlets
with bicycles on the cover.

Q2:A girl plaving trumpet in a
marching band.

X POPIIN Sunsixy

<_ AVVN ImQ

Q3:A guy waterskiing
behind a boat.

Q5:A man dressed in military

)4:A man jumped up to kick a e .
Q anjump P % uniform sits down and looks

ball on the grass. )
through some papers.

Figure 4. Visual comparison of negative effects of mismatched words (blue) and positive effects of matched words (red) in our NAAF and
existing methods. It shows that our NAAF can explicitly mine mismatch regions in the image w.r.t. the mismatched words for highlighting
their negative effects, while existing methods mainly concentrate on matched ones, and typically ignore the effects of mismatched words.

Methods Image-to-Text Text-to-Image

R@] R@5 R@10|R@1 R@5 R@10

NAAF w/oNeg. |66.2 91.0 96.2 |534 80.0 &7.8
NAAF w/o Masks | 74.2 93.0 964 |57.2 829 88.4
NAAF w i2t 787 946 97.7 |583 84.0 90.1
NAAF w/o GloVe | 759 93.6 97.7 | 555 81.0 879
NAAF w/o Intra | 79.3 96.1 98.0 |59.2 83.9 90.0
NAAF Full 819 96.1 98.3 |61.0 853 90.6

Table 4. Ablation studies about the model design (Sec.3.1.2),
which are obtained on Flickr30K.

The effectiveness of model designing. The ‘NAAF-
full’ denotes the two models’ averaging, while others are all
single models. As shown in Tab.4, 1) For omitting the nega-
tive branch in NAAPF, it is obvious that the performance has
a major degradation, which verifies the effectiveness of ex-
ploiting the negative effects of mismatched clues. 2) When
removing the designed masks, the model cannot achieve
high performance since it cannot precisely calculate the
similarity/dissimilarity in image-text pairs. 3) Adding the
i2t direction to NAAF will obtain suboptimal performance,
since as we analyzed in the Sec.1, the mismatched regions
in the image are meaningless so that the introduction may
cause interference. 4) Following SHAN, we use the GloVe
embeddings that relatively improve the performance. Note
that, for our single model without GloVe, it can also exceed
the single SGRAF with nearly 3% rSum improvements. 5)
Compared with the single model (with underlines in Tab.3),
the performance is slightly decreased without using intra-
modal, verifying that the intra-relationship can make more
accurate negative effect measurement.

4.4. Visualization and Case Study

To better understand the effectiveness of NAAF, we vi-
sualize the word-region similarity comparison of the false-

positive, i.e., incorrect candidate but ranking top-1 in exist-
ing method [7,23,26,27], where the text is query in Fig. 4.
We can see that mismatched words’ negative effects, i.e.,
regions marked in blue, in existing method are negligible.
In contrast, our NAAF can correctly capture and highlight
the negative effects of mismatched words, hence these false-
positive can be eliminated. As for the specific cases, NAAF
can accurately locate the mismatched regions w.r.t. the text.
In terms of “reflective vest” in Q1 and “military uniform”
in Q5, NAAF can accurately focus on the mismatched re-
gions of clothes in the image, showing robust negative ef-
fects. Moreover, for a more complex example, the action
“jumped up” in Q3 can also be found mismatch in the im-
age, demonstrating the efficiency of mismatched mining.

5. Conclusion

In this paper, we propose a novel negative-aware atten-
tion framework for image-text matching. Different from
conventional attention, our method can simultaneously fo-
cus on both mismatched and matched fragments to explic-
itly exploit their negative and positive effects, where an ef-
ficient iterative optimization is constructed to maximally
mine the negative mismatch fragments, yielding discrimina-
tive and robust negative effects. Moreover, the two-branch
matching mechanism enables respectively measuring the
accurate similarity/dissimilarity degrees to jointly infer the
overall image-text similarity, solving the neglection of mis-
matched clues in existing methods. Comprehensive experi-
ments demonstrate the superiority of our NAAF framework.
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