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HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

A. Broader Impact
HyperStyle enables accurate and highly editable inver-

sions of real images. While our tool aims to empower con-
tent creators, it can also be used to generate more convinc-
ing deep-fakes [25] and aid in the spread of disinforma-
tion [27]. However, powerful tools already exist for the de-
tection of GAN-synthesized imagery [15, 28]. These tools
continually evolve, which gives us hope that any potential
misuse of our method can be mitigated.

Another cause for concern is the bias that generative
networks inherit from their training data [17]. Our model
was similarly trained on such a biased set, and as a result,
may display degraded performance when dealing with im-
ages from minority classes [16]. However, we have demon-
strated that our model successfully generalizes beyond its
training set, and allows us to similarly shift the GAN be-
yond its original domain. These properties allow us to bet-
ter preserve minority traits when compared to prior works,
and we hope that this benefit would similarly enable fairer
treatment of minorities in downstream tasks.

B. Ablation Study: Qualitative Comparisons
In Sec. 4.3 of the main paper, we presented a quanti-

tative ablation study to validate the design choices of our
hypernetworks. We now turn to provide visual comparisons
to complement this. First, we illustrate the effectiveness of
the iterative refinement scheme in Fig. 1. Observe that it-
eratively predicting the weight offsets results in sharper re-
constructions. This is best reflected in the preservation of
fine details, most notably in the reconstruction of hairstyle
and facial hair. In Fig. 2, we show that altering the toRGB
convolutional layers harms the editability of the resulting
inversions. This is most noticeable in edits requiring global
changes, such as pose and age. For instance, altering the
pose in the second row results in blurred edits. Additionally,
when modifying age in the bottom two rows, HyperStyle
succeeds in realistically altering the clothing (3rd row) and
hairstyle (4th row).

C. Additional Quantitative Results
Following the quantitative reconstruction metrics pro-

vided in the main paper on the human facial domain, we
provide quantitative results on the cars domain and wild an-
imals domain in Tabs. 1 and 2.
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Figure 1. Reconstruction comparison of HyperStyle with and
without the iterative refinement (IR) training and inference
scheme. As shown, gradually predicting the desired weight off-
sets results in sharper images with less artifacts, particularly in
finer details along the hair, for example. Best viewed zoomed-in.
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Figure 2. Comparison of HyperStyle trained with and without al-
tering the toRGB layers of StyleGAN, denoted by “All Layers”
and “HyperStyle”, respectively. Altering toRGB layers produces
more noticeable editing artifacts when making a global change.
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Cars
Method ↑MS-SSIM ↓ LPIPS ↓ L2 ↓ Time (s)

StyleGAN2 [11] 0.79 0.16 0.06 198.9
PTI [21] 0.93 0.11 0.01 33.71

pSp [20] 0.58 0.29 0.10 0.071
e4e [26] 0.53 0.32 0.12 0.071
ReStylepSp [1] 0.66 0.25 0.07 0.359

ReStylee4e [1] 0.60 0.29 0.09 0.359

HyperStyle 0.67 0.27 0.07 0.491

Table 1. Quantitative reconstruction results on the cars domain,
computed over the Stanford Cars dataset [12].

AFHQ Wild
Method ↑MS-SSIM ↓ LPIPS ↓ L2 ↓ Time (s)

StyleGAN2 [11] 0.82 0.13 0.03 203.0
PTI [21] 0.93 0.08 0.01 33.71

pSp [20] 0.51 0.35 0.13 0.075
e4e [26] 0.47 0.36 0.14 0.075
ReStylepSp [1] 0.57 0.21 0.05 0.303

ReStylee4e [1] 0.52 0.25 0.07 0.303

HyperStyle 0.56 0.24 0.06 0.551

Table 2. Quantitative reconstruction results on the wild animals
domain, computed over the AFHQ Wild [3] dataset.

D. The HyperStyle Architecture

Given the 6-channel input, the HyperStyle architecture
begins with a shared backbone which outputs a single
16× 16× 512 feature map. This feature map is then passed
to each Refinement Block, which further down-samples the
feature map using a set of 2-strided 3× 3 convolutions with
LeakyReLU activations to obtain a 1× 1× 512 representa-
tion. The standard Refinement Block then directly predicts
the 1×1×Cin

` ×Cout
` using a single fully-connected layer.

In addition to the standard Refinement Block, we in-
troduce a Shared Refinement Block that is shared between
multiple hypernetwork layers. These Shared Refinement
Blocks make use of two fully-connected layers whose
weights are shared between different output heads. The first
fully-connected layer transforms the 1 × 1 × 512 tensor to
a 512 × 512 intermediate representation. This is followed
by a per-channel fully-connected layer which maps each
1 × 512 channel to a 1 × 1 × 512 tensor, resulting in the
final 1×1×512×512 dimensional offsets. We apply these
shared blocks to all generator layers with a convolutional
dimension of 3× 3× 512× 512.

In both cases, we obtain a predicted offset of size 1 ×
1×Cin

` ×Cout
` for a given generator layer `. This tensor is

then broadcasted channel-wise to match the k` × k` kernel
dimension of the generator’s convolutional filters, resulting
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Figure 3. The StyleGAN2 [11] architecture.

in a final offset of size k` × k` × Cin
` × Cout

` . This final
tensor can then be used to update the convolutional weights
using Eq. (6) presented in the main paper. We provide a
breakdown of the two architectures in Tab. 3 and Tab. 4.

E. The StyleGAN2 Architecture

To determine which network parameters are most cru-
cial to our inversion goal, it is important to understand the
overall function of the components where these parameters
reside. In the case of StyleGAN2 [11], we consider four
key components, as illustrated in Fig. 3. First, a mapping
network converts the initial latent code z ∼ N (0, 1)

512,
into an equivalent code in a learned latent space w ∈ W .
These codes are then fed into a series of affine transforma-
tion blocks, one for each of the network’s convolutional lay-
ers, which in turn predict a series of factors used to modu-
late the convolutional kernel weights. Lastly, the generator
itself is built from two types of convolutional blocks: fea-
ture space convolutions, which learn increasingly complex
representations of the data in some high-dimensional fea-
ture space, and toRGB blocks, which utilize convolutions to
map these complex representations into residuals in a pla-
nar (or RGB) space. Of these four components, we restrict
ourselves to modifying only the feature-space convolutions.
We outline the different generator layers and their dimen-
sions in Tab. 5.

F. Additional Qualitative Results

Finally, we provide additional results and comparisons,
as follows:

1. Fig. 4 provides additional reconstruction comparisons
on the human facial domain.

2. Fig. 5 contains a visual comparison between Hyper-
Style and IDInvert [30] on the human facial domain.



Layer Weight Dimension Output Size

Conv-LeakyReLU 3× 3× 512× 256 8× 8× 256
Conv-LeakyReLU 3× 3× 256× 256 4× 4× 256
Conv-LeakyReLU 3× 3× 256× 512 2× 2× 512
AdaptivePool2D - 1× 1× 512
Fully-Connected 512×

(
Cin

` · Cout
`

)
1× 1× Cin

` × Cout
`

Table 3. The breakdown of the standard Refinement Block described in Section 3 of the main paper. For a given generator layer `,
Refinement Block receives as input the 16 × 16 × 512 feature map extracted from the shared backbone and returns the predicted weight
offsets of dimensions 1× 1× Cin

` × Cout
` .

Layer Weight Dimension Output Size

Conv-LeakyReLU 3× 3× 512× 128 16× 16× 128
Conv-LeakyReLU 3× 3× 128× 128 8× 8× 128
Conv-LeakyReLU 3× 3× 128× 128 4× 4× 128
Conv-LeakyReLU 3× 3× 128× 128 2× 2× 128
Conv-LeakyReLU 3× 3× 128× 512 1× 1× 512
Fully-Connected 512× 512 1× 1× 512

Shared Fully-Connected 512× (512 · 512) 512× 512
Shared Fully-Connected 512× (512 · 1 · 1) 1× 1× 512× 512

Table 4. The breakdown of the Shared Refinement Block described in Section 3 of the main paper. The Shared Refinement Block consists
of a pair of fully-connected layers that are shared across multiple blocks (namely those tasked with predicting offsets for the generator’s
largest convolutional layers).

3. Fig. 6 provides reconstruction comparisons on the cars
domain.

4. Fig. 7 shows additional editing comparisons on the hu-
man facial domain obtained with StyleCLIP [18] and
InterFaceGAN [24].

5. Fig. 8 shows additional HyperStyle editing results
on the human facial domain obtained with InterFace-
GAN [24].

6. Fig. 9 contains additional HyperStyle editing results
on the human facial domain obtained with Style-
CLIP [18].

7. Fig. 10 provides additional editing comparisons on the
cars domain obtained with GANSpace [6].

8. Fig. 11 contains additional HyperStyle editing results
on the cars domain obtained with GANSpace [6].

9. Fig. 12 contains additional HyperStyle editing results
obtained with StyleCLIP [18] on the AFHQ Wild [3]
test set.

10. Fig. 13 and Fig. 14 illustrate HyperStyle’s reconstruc-
tions and edits on challenging out-of-domain images.

11. Fig. 15 illustrates additional domain adaptation results
and comparisons.

G. Implementation Details
All hypernetworks employ a ResNet34 [7] backbone

pre-trained on ImageNet. The networks have a modified
input layer to accommodate the 6-channel inputs. We train
our networks using the Ranger optimizer [29] with a con-
stant learning rate of 0.0001 and a batch size of 8.

When applying the iterative refinement scheme from
Alaluf et al. [1], our hypernetworks use T = 5 iterative
steps per batch during training. For each step t, we com-
pute losses between the current reconstructions and inputs.
That is, losses are computed T times per batch.

Following recent works [1, 20, 26], we set λLPIPS = 0.8.
For the similarity loss human facial domain, we use a pre-
trained ArcFace [4] network with λsim = 0.1. For the re-
maining domains, we utilize a MoCo-based [2] loss with
λsim = 0.5, as done in Tov et al. [26]. All experiments
were conducted on a single NVIDIA Tesla P40 GPU.

H. Licenses
We provide the licenses of all datasets and models used

in our work in Tab. 6.



Group Layer Index
`

Layer Name Filter Dimension
k × k × Cin

` × Cout
`

Coarse

1 Conv 1 3× 3× 512× 512
2 toRGB 1 1× 1× 512× 3
3 Conv 2 3× 3× 512× 512
4 Conv 3 3× 3× 512× 512
5 toRGB 2 1× 1× 512× 3

Medium

6 Conv 4 3× 3× 512× 512
7 Conv 5 3× 3× 512× 512
8 toRGB 3 1× 1× 512× 3
9 Conv 6 3× 3× 512× 512

10 Conv 7 3× 3× 512× 512
11 toRGB 4 1× 1× 512× 3

Fine

12 Conv 8 3× 3× 512× 512
13 Conv 9 3× 3× 512× 512
14 toRGB 5 1× 1× 512× 3
15 Conv 10 3× 3× 512× 256
16 Conv 11 3× 3× 256× 256
17 toRGB 6 1× 1× 256× 3
18 Conv 12 3× 3× 256× 128
19 Conv 13 3× 3× 128× 128
20 toRGB 7 1× 1× 128× 3
21 Conv 14 3× 3× 128× 64
22 Conv 15 3× 3× 64× 64
23 toRGB 8 1× 1× 64× 3
24 Conv 16 3× 3× 64× 32
25 Conv 17 3× 3× 32× 32
26 toRGB 9 1× 1× 32× 3

Table 5. The breakdown of the StyleGAN2 [11] layer weights and their filter dimensions, split into the coarse, medium, and fine sets. Our
final hypernetwork configuration alters the non-toRGB, feature-space convolutions from the medium and fine layers.

Dataset Source License
FFHQ [10] CC BY-NC-SA 4.01

CelebA-HQ [8, 14] Non-commercial Research Purposes
Stanford Cars [12] Non-commercial Research Purposes
AFHQ [3] CC BY-NC 4.0

Model Source License
StyleGAN2 [11] Nvidia Source Code License-NC
pSp [20] MIT License
e4e [26] MIT License
ReStyle [1] MIT License
PTI [21] MIT License
IDInvert [30] MIT License
InterFaceGAN [24] MIT License
StyleCLIP [18] MIT License
GANSpace [6] Apache 2.0 License
StyleGAN2-pytorch [23] MIT License
StyleGAN-ADA [9] Nvidia Source Code License
StyleGAN-NADA [5] MIT License
Toonify [19] No License
Anycost GAN [13] MIT License
HopeNet [22] Apache 2.0 License

(a) Datasets (b) Models

Table 6. Datasets and models used in our work and their respective licenses.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://nvlabs.github.io/stylegan2/license.html
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
http://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/MIT
https://nvlabs.github.io/stylegan2-ada-pytorch/license.html
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
http://www.apache.org/licenses/LICENSE-2.0
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[15] Sara Mandelli, Nicolò Bonettini, Paolo Bestagini, and Ste-
fano Tubaro. Training CNNs in presence of JPEG compres-
sion: Multimedia forensics vs computer vision. In IEEE In-
ternational Workshop on Information Forensics and Security
(WIFS), 2020. 1

[16] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi,
and Cynthia Rudin. Pulse: Self-supervised photo upsam-
pling via latent space exploration of generative models. In

Proceedings of the ieee/cvf conference on computer vision
and pattern recognition, pages 2437–2445, 2020. 1

[17] Michele Merler, Nalini Ratha, Rogerio S. Feris, and John R.
Smith. Diversity in faces, 2019. 1

[18] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery, 2021. 3, 4, 9, 14

[19] Justin N M Pinkney and Doron Adler. Resolution Depen-
dant GAN Interpolation for Controllable Image Synthesis
Between Domains. arXiv preprint arXiv:2010.05334, 2020.
4, 17

[20] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: a stylegan encoder for image-to-image translation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021. 2, 3, 4

[21] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real im-
ages. arXiv preprint arXiv:2106.05744, 2021. 2, 4

[22] Nataniel Ruiz, Eunji Chong, and James M. Rehg. Fine-
grained head pose estimation without keypoints. In The
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshops, June 2018. 4

[23] Kim Seonghyeon. Stylegan2-pytorch. https://
github.com/rosinality/stylegan2-pytorch,
2020. 4

[24] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. In-
terpreting the latent space of gans for semantic face editing.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9243–9252, 2020. 3,
4, 9, 10, 11

[25] Supasorn Suwajanakorn, Steven M Seitz, and Ira
Kemelmacher-Shlizerman. Synthesizing obama: learn-
ing lip sync from audio. ACM Transactions on Graphics
(ToG), 36(4):1–13, 2017. 1

[26] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and
Daniel Cohen-Or. Designing an encoder for stylegan image
manipulation, 2021. 2, 3, 4

[27] Cristian Vaccari and Andrew Chadwick. Deepfakes and
disinformation: Exploring the impact of synthetic political
video on deception, uncertainty, and trust in news. Social
Media + Society, 6(1):2056305120903408, 2020. 1

[28] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew
Owens, and Alexei A Efros. Cnn-generated images are sur-
prisingly easy to spot...for now. In CVPR, 2020. 1

[29] Less Wright. Ranger - a synergistic optimizer.
https : / / github . com / lessw2020 / Ranger -
Deep-Learning-Optimizer, 2019. 3

[30] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-
domain gan inversion for real image editing. arXiv preprint
arXiv:2004.00049, 2020. 2, 4, 7

https://github.com/rosinality/stylegan2-pytorch
https://github.com/rosinality/stylegan2-pytorch
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer


Input Optimization PTI ReStylepSp ReStylee4e pSp e4e HyperStyle

Figure 4. Additional reconstruction quality comparisons on the human facial domain between the various inversion techniques. Best
viewed zoomed-in.
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Figure 5. Reconstruction comparison of HyperStyle and IDInvert [30] on the CelebA-HQ [8, 14] test set.



Input Optimization PTI ReStylepSp ReStylee4e pSp e4e HyperStyle

Figure 6. Additional reconstruction quality comparisons on the cars domain between the various inversion techniques.
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Input Optimization PTI ReStylepSp ReStylee4e pSp e4e HyperStyle

Figure 7. Additional editing comparisons between inversion techniques obtained using StyleClip [18] (first five rows) and InterFace-
GAN [24] (bottom four rows).



Source Inversion Young Old —— Smile —— —— Pose ——

Figure 8. Additional reconstruction and editing results obtained by HyperStyle over the facial domain using InterFaceGAN [24].



Input Inversion Sad Glasses Beard Bowl Cut Long Hair

Input Inversion Smile Tanned Makeup Short Hair Brown Hair

Input Inversion Smile Glasses Afro Blonde Hair Bowl Cut

Input Inversion Smile Tanned Lipstick Bob Cut Black Hair

Input Inversion No Beard Glasses Bald Blonde Hair Long Hair

Input Inversion Smile Pale No Makeup Blonde Hair Bowl Cut

Input Inversion Sad Glasses Beard Afro Hi-Top Fade

Input Inversion Smile Lipstick Bangs Blonde Hair Long Hair

Figure 9. Additional reconstruction and editing results obtained by HyperStyle over the facial domain using StyleCLIP’s [24] global
direction approach. We illustrate a wide range of edits including changes to expression, facial hair, makeup, and hairstyle.
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Figure 10. Additional editing comparisons over the cars domain obtained using GANSpace [6].



Source Inversion —— Pose —— Cube Color Grass

Figure 11. Additional editing results obtained with HyperStyle over the cars domain obtained using GANSpace [6].



Input Inversion Baby Animal Input Inversion Fox→ Wolf

Input Inversion Wolf→ Lion Input Inversion Lion→ Tiger

Figure 12. Reconstruction and editing results obtained with HyperStyle on the AFHQ Wild [3] test set. Edits were obtained using
StyleCLIP’s [18] global directions approach.



Input e4e HyperStyle ———— HyperStyle Edits ————

Input pSp HyperStyle ———— HyperStyle Edits ————

Figure 13. Reconstruction and editing results obtained on challenging input styles not observed during training. All reconstructions and
editing results are obtained with a hypernetwork and StyleGAN generator trained on the FFHQ [10] dataset. Note, some of the input images
were generated from a StyleGAN model fine-tuned with StyleGAN-NADA [5]. Even in such cases, prior encoders struggle in accurately
reconstructing the input.



Input ReStylee4e HyperStyle ———— HyperStyle Edits ————

Input ReStylepSp HyperStyle ———— HyperStyle Edits ————

Figure 14. Reconstruction and editing results obtained on challenging input styles unobserved during training, using the same settings as
in Fig. 13.
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Figure 15. Additional domain adaptation comparisons for various fine-tuned models such as Toonify [19] and those obtained using
StyleGAN-NADA [5].
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