Super-Fibonacci Spirals: Fast, Low-Discrepancy Sampling of SO(3)

Supplementary Material

A. Geometry of S?

In the following we assume that all points x; are unit
vectors in R%, i.e. xiTxl- =1,..., written in column form.

A.1. Simplices

Two points xg,x; spanning a two-dimensional linear
subspace define an edge. We assume the edge connects
the points along the shorter of the two arcs connecting the
points. Under this assumption, the length of the edge is
given as d(xg, x1 ). For practical reasons, we flip the sign of
X if the scalar product x/x; is negative. Then the edge is
defined as the convex combination of xg and x; normalized
so that the points lie on the unit sphere.

Three points xg,x1,X2 spanning a three-dimensional
linear subspace in R* define ’planar’ spherical faces. From
the possible combinations, we pick the face defined by the
three shorter arcs defined by the three pairs of points. Sim-
ilar to the case of edges, for practical purposes we achieve
this by flipping the signs of x; and/or x5 based on the signs
of the scalar products.

The face has a normal in S®, which is the direction in S®
orthogonal to the two directions spanned by the face. Notice
that the linear 3-space spanned by xq, X7, X2 contains all
normals to the unit sphere inside the face, so the normals
to the linear 3-space in R* is n. In other words, we can
compute n as the single element in the null space of the
3 x 4 matrix (xg,X1,X2).

Four points (Xg, X1, X2,X3) = X € R*** with X hav-
ing full rank form spherical tetrahedra. Again we select the
desired simplex by always taking the shorter among the two
possible arcs for pairs of points and make this practical by
possibly reflecting the points. We often need the normals
of all four faces of the tetrahedron. For this case notice that
any normal vector ng for the face opposite of xy pointing
into the direction of x satisfies

Xng = (1,0,0,007, A >0. (24)

In other words, unit normal vectors pointing into the spher-
ical tetrahedron can be conveniently computed by normal-
izing the rows of X!, We will explain how to compute the
(3-dimensional) volume of the spherical tetrahedron further
below.

A.2. Circumcenters

The circumcenter c of a simplex is a point with the same
distance r to all vertices of the simplex: d(c,x;) = r. To
define it in case the simplex it is not fully dimensional, i.e.
for edges and faces, we also ask that it is contained in the

linear span of the vertices in R* ¢ = Zl a;x;. This means
for edges we get a point on the edge, namely the midpoint;
and for faces we get a point on the plane through the face.
Circumcenters are naturally of interest for geometry on the
sphere.

Note that the vertices of the simplex define an affine sub-
space in R*. The intersection of the affine subspace with the
restriction of S to the linear subspace spanned by the ver-
tices defines a spherical cap. The boundary of this cap is a
sphere. It contains all vertices so it is their circumsphere.
The circumcenter is the point on the spherical cap furthest
from the affine subspace. So the circumcenter is orthogonal
to the affine span of the points, i.e. c'e; = 0,i > 0, where
e, = X; — Xq is the edge vector given by the vertex x;
relative to xg. This leads to a linear system describing the
direction of the circumcenter as a point on the affine span
of the vertices, i.e. in terms of the coefficients a;.The the
system for a face is:

xgel xIel x;el ag 0
Xa—eg xIeg X;—eg al = 0 (25)
1 1 1 as 1

The case for a tetrahedron is analogous, for an edge we have
ap = a; = 1/2. The point on the affine span can be nor-
malized to yield the desired circumcenter.

A.3. Angles

The angle ¢ enclosed by two edges xg, x; and Xg, X2 can
be computed by projecting on to the tangent hyper-plane at
xXo and we get

cos¢ =x; (I—x0x{)x2. (26)

The dihedral angle between two spherical faces (e.g. the
dihedral angles in a spherical tetrahedron) can be computed
based on the scalar product of their normals. Notice that
no projection onto the sphere is necessary (this is similar to
computing the angle between two edges in S? based on nor-
mals to the planes defined by the edges). The six dihedral
angles in a spherical tetrahedron can be computed conve-
niently as the Gram matrix of the normalized inverse of the
coordinates.

A.4. Volume

We call the measure of closed regions in S3 volume,
because they are 3-dimensional. Another commonly used
term is hyper-area, because they are a subset of the surface
of an embedded manifold.

The total volume of the surface of a unit 3-sphere is 272.
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Figure 7. Approx. of discrepancy relative to number of centers.

A hyper-spherical cap can be specified either by the an-
gle 6 between a ray through the center of the cap and the
perimeter; or by the height h of the center of the cap over the
hyper-plane separating the cap from the rest of the sphere.
These parameters are related by h = 1 — cos #. The bound-
ary of the cap is the intersection of this hyper-plane with the
sphere, so it is a Euclidean 3-sphere. Its radius is r = sin 6,
so its surface area (in the plane or in S?) is

A(f) = 4rsin?0,  A(h) = 4nh(h — 2) (27)

We can find the volume of the cap by integrating the surface
area over the angle:

-0
V(o :/ drsin?rdr = 27(0 — sin 6 cos 6
(9) ; ( ) 28)

= (260 — sin 20).

This form is more attractive in terms of fast computation
compared to more general expressions appearing in the lit-
erature that involve the incomplete beta function [31].

For computation of the volumes of the Voronoi cells
(see below) we also need the volume of a spherical tetra-
hedron. Expressions for this volume involve hypergeomet-
ric series [39,49]. We use the formulae provided by Mu-
rakami [39], as the hypergeometric series appears in the
form of the dilogarithm, which can be efficiently approx-
imated [36]. Our implementation is based on freely avail-
able code [59]. The volume is described in terms of the 6
dihedral angles of the tetrahedron (similar to the area of a
spherical triangle in S? depending on the three interior an-
gles). The formulae for computing the volume from the di-
hedral angles are involved — we provide code and refer the
reader to the original literature for details.

B. Convergence of Discrepancy

Computing ground truth discrepancy is difficult. There

<Z> + <§) + (Z) € O(n?) (29)

different critical spheres defining a cap. For each of them
we have to determine the number of samples inside it, which

is worst case O(n). So a straightforward implementation is
O(n®) for n samples and can only be computed for very
small n. Fig. 7 shows the result for n = 512 samples for
uniform and Super-Fibonacci sampling. Computing ground
truth (horizontal lines) took several hours for each sequence
(sequential), while the approximations took a few seconds.
The general behavior of increasing discrepancy with the
number of centers is similar for larger n.

C. Measures from Delaunay triangulation

Two measures commonly used for assessing the quality
of spherical designs can be conveniently computed from the
Delaunay triangulation of the samples:

e The covering radius or dispersion is the radius of the
largest empty sphere. It can be computed as the maxi-
mal radius of the circumspheres of the Delaunay tetra-
hedra.

e The packing distance is the largest radius of non-
overlapping spheres placed at the samples. It is half
of the shortest Delaunay edge.

Optimal values for these measures are achieved by reg-
ular tetrahedral subdivisions, of which there are only 3 in-
stances that can be realized: the 3 regular 3-polytopes with
tetrahedral cells. By making the assumption that all tetrahe-
dra are regular, unattainable lower bounds can be derived.
For any tetrahedral mesh on the sphere, by Euler-Poincaré
we have

n—e+t=0, (30)

where e is the number of edges, ¢ is the number of tetra-
hedra, and n, as before, is the number of vertices. Here
we have already exploited that the number of triangles is
twice the number of tetrahedra. Assuming a regular spher-
ical tetrahedron with dihedral angle 6 the average edge de-
gree is %’“. Plugging this in we find the relations

nt(ifl)e(l?z;). G1)

This shows that optimal values depend on the size of the
set. We can compute the volume Va () of a regular spheri-
cal tetrahedron with dihedral angle 6 using the above men-
tioned computation of the volume for given dihedral angles.
This allows to express bounds on the dihedral angle and
other properties for given sample count:

n(f) = VZT(Z) <?;_9 - 1) . (32)

Computing 6 for given n can be done by bisection as Va (6)
is quite involved. Given 6 we can construct the spheri-
cal tetrahedron explicitly and then compute the edge length
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Figure 8. Dispersion (or covering radius, left) and smallest distance between points (packing distance, right) relative to lower bounds for
these values, derived based on assuming the sphere could be tiled with congruent regular spherical tetrahedra.

or circumradius of the spherical tetrahedron to get lower
bounds on packing distance or dispersion. The numerical
values for the bounds on dispersion derived in this way ap-
pear to be similar to the ones by Larsen and Schmidt [29],
although our derivation is based on other principles and per-
haps simpler.

Figure 8 shows scatter plots of the dispersion and pack-
ing distance relative to the (generally unattainable) lower,
resp. upper bounds. We have excluded the uniform distri-
bution, as the random placement of samples may lead to
arbitrarily bad relative values. Likewise, the close samples
in the SOI method based on subdividing an icosahedron has
led to unusable data for packing distance and the data is not
shown. Karney’s data has been constructed and selected to
minimize dispersion and yields to lowest dispersion, but has
rather bad packing distance. The SOI method based on op-
timization leads to good dispersion and very low packing
distance. Super-Fibonacci sampling is generally better than
Hopf fibration in both cases.

D. Parameter search

We can use the deterministic computation of dispersion
relative to the upper bound to search for suitable parameters
¢ and v in Super-Fibonacci sampling. We consider roots of
small degree polynomials with integer coefficients:

p(x) = Z = 0%;z". (33)

%

Inspired by the use of Pisot numbers [4] in aperiodic
tilings [38] we limit the coefficients for the non-constant
parts to ¢; € {—1,0,1} and further the constant part to
be negative ¢g € {—1,...,—¢é}. For each such polyno-
mial we use Newton’s method with starting value o = 1
and store the result as candidate r; if Newton’s method con-
verged. Early experiments showed that the values for ¢ and
1) should not be too different from each other so we limit
the candidates to those satisfying 1 < r; < 2.
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Figure 9. The pairs (¢, ) whose dispersion realtive to the lower
bound is smaller than 1.5 forall n = 2% k € {6,...,20}.

Based on suggestion for two dimensional Fibonacci sam-

ple [21,52], we use the candidates to define the following
pairs

(rlv Tj)? { 7é J

-1 -1
(ritiryt) i
(¢7 1/)) - ( 2 J (34)
i, ri)
(ri i)

With this pool of pairs, we compute the dispersion rel-
ative to the upper bound and retain only the pairs that are
below a threshold. We use 1.5 (compare Fig. 8, left). Our
strategy is to start with small samples size n, quickly elim-
inating a large number of pairs. Then we continue with the
remaining pairs for increasing n, repeatedly removing pairs
whose dispersion is more than 1.5 the (unattainable) lower
bound. This leaves us with a set of pairs that have compa-
rably low dispersion for a range of sample sizes.

Limiting the polynomial degree to 5, and the constant
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Figure 10. Average dispersion relative to lower bound over n =
2% k € {6,...,20} for different pairs of (¢,1).

0 20

to —4 generates 126 candidates r;, resulting in roughly
16K initial pairs. The pairs remaining when rejecting pairs
based on n = 2% k € {6,...,20} results in 47 pairs,
shown in Figure 9. All pairs result from either taking
(¢, ) = (rs,rj) or (¢,9) = (r;17r;1). There is no dis-
cernible relation between location in the plane and average
dispersion. Figure 10 shows that the average dispersion is
very similar among the selected pairs. Our particular choice
based on ¢ = 2,9* = 1 + 4 is at index 10. This selection
is based mostly on picking simple polynomials with few
non-zero coefficients but also checking the resulting dis-
crepancies (which is more time consuming than computing
dispersion). However, the visualizations suggests that other
choices for (¢, 1) would lead to alternative Super-Fibonacci
samples with similar properties.
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