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Supplementary Material

A. Geometry of S3

In the following we assume that all points xi are unit
vectors in R4, i.e. xT

i xi = 1, . . ., written in column form.

A.1. Simplices

Two points x0,x1 spanning a two-dimensional linear
subspace define an edge. We assume the edge connects
the points along the shorter of the two arcs connecting the
points. Under this assumption, the length of the edge is
given as d(x0,x1). For practical reasons, we flip the sign of
x0 if the scalar product xT

0x1 is negative. Then the edge is
defined as the convex combination of x0 and x1 normalized
so that the points lie on the unit sphere.

Three points x0,x1,x2 spanning a three-dimensional
linear subspace in R4 define ’planar’ spherical faces. From
the possible combinations, we pick the face defined by the
three shorter arcs defined by the three pairs of points. Sim-
ilar to the case of edges, for practical purposes we achieve
this by flipping the signs of x1 and/or x2 based on the signs
of the scalar products.

The face has a normal in S3, which is the direction in S3
orthogonal to the two directions spanned by the face. Notice
that the linear 3-space spanned by x0,x1,x2 contains all
normals to the unit sphere inside the face, so the normals
to the linear 3-space in R4 is n. In other words, we can
compute n as the single element in the null space of the
3× 4 matrix (x0,x1,x2).

Four points (x0,x1,x2,x3) = X ∈ R4×4 with X hav-
ing full rank form spherical tetrahedra. Again we select the
desired simplex by always taking the shorter among the two
possible arcs for pairs of points and make this practical by
possibly reflecting the points. We often need the normals
of all four faces of the tetrahedron. For this case notice that
any normal vector n0 for the face opposite of x0 pointing
into the direction of x0 satisfies

Xn0 = (λ, 0, 0, 0)T, λ > 0. (24)

In other words, unit normal vectors pointing into the spher-
ical tetrahedron can be conveniently computed by normal-
izing the rows of X−1. We will explain how to compute the
(3-dimensional) volume of the spherical tetrahedron further
below.

A.2. Circumcenters

The circumcenter c of a simplex is a point with the same
distance r to all vertices of the simplex: d(c,xi) = r. To
define it in case the simplex it is not fully dimensional, i.e.
for edges and faces, we also ask that it is contained in the

linear span of the vertices in R4: c =
∑

i aixi. This means
for edges we get a point on the edge, namely the midpoint;
and for faces we get a point on the plane through the face.
Circumcenters are naturally of interest for geometry on the
sphere.

Note that the vertices of the simplex define an affine sub-
space in R4. The intersection of the affine subspace with the
restriction of S3 to the linear subspace spanned by the ver-
tices defines a spherical cap. The boundary of this cap is a
sphere. It contains all vertices so it is their circumsphere.
The circumcenter is the point on the spherical cap furthest
from the affine subspace. So the circumcenter is orthogonal
to the affine span of the points, i.e. cTei = 0, i > 0, where
ei = xi − x0 is the edge vector given by the vertex xi

relative to x0. This leads to a linear system describing the
direction of the circumcenter as a point on the affine span
of the vertices, i.e. in terms of the coefficients ai.The the
system for a face is:xT

0 e1 xT
1 e1 xT

2 e1
xT
0 e2 xT

1 e2 xT
2 e2

1 1 1

a0a1
a2

 =

0
0
1

 (25)

The case for a tetrahedron is analogous, for an edge we have
a0 = a1 = 1/2. The point on the affine span can be nor-
malized to yield the desired circumcenter.

A.3. Angles

The angle ϕ enclosed by two edges x0,x1 and x0,x2 can
be computed by projecting on to the tangent hyper-plane at
x0 and we get

cosϕ = xT
1

(
I− x0x

T
0

)
x2. (26)

The dihedral angle between two spherical faces (e.g. the
dihedral angles in a spherical tetrahedron) can be computed
based on the scalar product of their normals. Notice that
no projection onto the sphere is necessary (this is similar to
computing the angle between two edges in S2 based on nor-
mals to the planes defined by the edges). The six dihedral
angles in a spherical tetrahedron can be computed conve-
niently as the Gram matrix of the normalized inverse of the
coordinates.

A.4. Volume

We call the measure of closed regions in S3 volume,
because they are 3-dimensional. Another commonly used
term is hyper-area, because they are a subset of the surface
of an embedded manifold.

The total volume of the surface of a unit 3-sphere is 2π2.
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Figure 7. Approx. of discrepancy relative to number of centers.

A hyper-spherical cap can be specified either by the an-
gle θ between a ray through the center of the cap and the
perimeter; or by the height h of the center of the cap over the
hyper-plane separating the cap from the rest of the sphere.
These parameters are related by h = 1− cos θ. The bound-
ary of the cap is the intersection of this hyper-plane with the
sphere, so it is a Euclidean 3-sphere. Its radius is r = sin θ,
so its surface area (in the plane or in S3) is

A(θ) = 4π sin2 θ, A(h) = 4πh(h− 2) (27)

We can find the volume of the cap by integrating the surface
area over the angle:

V (θ) =

∫ θ

0

4π sin2 r dr = 2π(θ − sin θ cos θ)

= π(2θ − sin 2θ).

(28)

This form is more attractive in terms of fast computation
compared to more general expressions appearing in the lit-
erature that involve the incomplete beta function [31].

For computation of the volumes of the Voronoi cells
(see below) we also need the volume of a spherical tetra-
hedron. Expressions for this volume involve hypergeomet-
ric series [39, 49]. We use the formulae provided by Mu-
rakami [39], as the hypergeometric series appears in the
form of the dilogarithm, which can be efficiently approx-
imated [36]. Our implementation is based on freely avail-
able code [59]. The volume is described in terms of the 6
dihedral angles of the tetrahedron (similar to the area of a
spherical triangle in S2 depending on the three interior an-
gles). The formulae for computing the volume from the di-
hedral angles are involved – we provide code and refer the
reader to the original literature for details.

B. Convergence of Discrepancy
Computing ground truth discrepancy is difficult. There

are (
n

2

)
+

(
n

3

)
+

(
n

4

)
∈ O(n4) (29)

different critical spheres defining a cap. For each of them
we have to determine the number of samples inside it, which

is worst case O(n). So a straightforward implementation is
O(n5) for n samples and can only be computed for very
small n. Fig. 7 shows the result for n = 512 samples for
uniform and Super-Fibonacci sampling. Computing ground
truth (horizontal lines) took several hours for each sequence
(sequential), while the approximations took a few seconds.
The general behavior of increasing discrepancy with the
number of centers is similar for larger n.

C. Measures from Delaunay triangulation
Two measures commonly used for assessing the quality

of spherical designs can be conveniently computed from the
Delaunay triangulation of the samples:

• The covering radius or dispersion is the radius of the
largest empty sphere. It can be computed as the maxi-
mal radius of the circumspheres of the Delaunay tetra-
hedra.

• The packing distance is the largest radius of non-
overlapping spheres placed at the samples. It is half
of the shortest Delaunay edge.

Optimal values for these measures are achieved by reg-
ular tetrahedral subdivisions, of which there are only 3 in-
stances that can be realized: the 3 regular 3-polytopes with
tetrahedral cells. By making the assumption that all tetrahe-
dra are regular, unattainable lower bounds can be derived.
For any tetrahedral mesh on the sphere, by Euler-Poincaré
we have

n− e+ t = 0, (30)

where e is the number of edges, t is the number of tetra-
hedra, and n, as before, is the number of vertices. Here
we have already exploited that the number of triangles is
twice the number of tetrahedra. Assuming a regular spher-
ical tetrahedron with dihedral angle θ the average edge de-
gree is 2π

θ . Plugging this in we find the relations

n = t

(
3θ

π
− 1

)
= e

(
1− π

3θ

)
. (31)

This shows that optimal values depend on the size of the
set. We can compute the volume V∆(θ) of a regular spheri-
cal tetrahedron with dihedral angle θ using the above men-
tioned computation of the volume for given dihedral angles.
This allows to express bounds on the dihedral angle and
other properties for given sample count:

n(θ) =
2π2

V∆(θ)

(
3θ

π
− 1

)
. (32)

Computing θ for given n can be done by bisection as V∆(θ)
is quite involved. Given θ we can construct the spheri-
cal tetrahedron explicitly and then compute the edge length
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Figure 8. Dispersion (or covering radius, left) and smallest distance between points (packing distance, right) relative to lower bounds for
these values, derived based on assuming the sphere could be tiled with congruent regular spherical tetrahedra.

or circumradius of the spherical tetrahedron to get lower
bounds on packing distance or dispersion. The numerical
values for the bounds on dispersion derived in this way ap-
pear to be similar to the ones by Larsen and Schmidt [29],
although our derivation is based on other principles and per-
haps simpler.

Figure 8 shows scatter plots of the dispersion and pack-
ing distance relative to the (generally unattainable) lower,
resp. upper bounds. We have excluded the uniform distri-
bution, as the random placement of samples may lead to
arbitrarily bad relative values. Likewise, the close samples
in the SOI method based on subdividing an icosahedron has
led to unusable data for packing distance and the data is not
shown. Karney’s data has been constructed and selected to
minimize dispersion and yields to lowest dispersion, but has
rather bad packing distance. The SOI method based on op-
timization leads to good dispersion and very low packing
distance. Super-Fibonacci sampling is generally better than
Hopf fibration in both cases.

D. Parameter search
We can use the deterministic computation of dispersion

relative to the upper bound to search for suitable parameters
ϕ and ψ in Super-Fibonacci sampling. We consider roots of
small degree polynomials with integer coefficients:

p(x) =
∑
i

= 0dcix
i. (33)

Inspired by the use of Pisot numbers [4] in aperiodic
tilings [38] we limit the coefficients for the non-constant
parts to ci ∈ {−1, 0, 1} and further the constant part to
be negative c0 ∈ {−1, . . . ,−ĉ0}. For each such polyno-
mial we use Newton’s method with starting value x0 = 1
and store the result as candidate ri if Newton’s method con-
verged. Early experiments showed that the values for ϕ and
ψ should not be too different from each other so we limit
the candidates to those satisfying 1 < ri < 2.
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Figure 9. The pairs (ϕ, ψ) whose dispersion realtive to the lower
bound is smaller than 1.5 for all n = 2k, k ∈ {6, . . . , 20}.

Based on suggestion for two dimensional Fibonacci sam-
ple [21, 52], we use the candidates to define the following
pairs

(ϕ, ψ) =


(ri, rj), i ̸= j(
r−1
i , r−1

j

)
, i ̸= j(

ri, r
2
i

)(
r−1
i , r−2

i

) . (34)

With this pool of pairs, we compute the dispersion rel-
ative to the upper bound and retain only the pairs that are
below a threshold. We use 1.5 (compare Fig. 8, left). Our
strategy is to start with small samples size n, quickly elim-
inating a large number of pairs. Then we continue with the
remaining pairs for increasing n, repeatedly removing pairs
whose dispersion is more than 1.5 the (unattainable) lower
bound. This leaves us with a set of pairs that have compa-
rably low dispersion for a range of sample sizes.

Limiting the polynomial degree to 5, and the constant
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Figure 10. Average dispersion relative to lower bound over n =
2k, k ∈ {6, . . . , 20} for different pairs of (ϕ, ψ).

to −4 generates 126 candidates ri, resulting in roughly
16K initial pairs. The pairs remaining when rejecting pairs
based on n = 2k, k ∈ {6, . . . , 20} results in 47 pairs,
shown in Figure 9. All pairs result from either taking
(ϕ, ψ) = (ri, rj) or (ϕ, ψ) = (r−1

i , r−1
j ). There is no dis-

cernible relation between location in the plane and average
dispersion. Figure 10 shows that the average dispersion is
very similar among the selected pairs. Our particular choice
based on ϕ2 = 2, ψ4 = ψ + 4 is at index 10. This selection
is based mostly on picking simple polynomials with few
non-zero coefficients but also checking the resulting dis-
crepancies (which is more time consuming than computing
dispersion). However, the visualizations suggests that other
choices for (ϕ, ψ) would lead to alternative Super-Fibonacci
samples with similar properties.
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