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I. Ablation: Temporal History for Inference

In Sec. 3.3 of the main text, we discussed how HODOR
can effectively incorporate temporal history from past
frames when predicting the object masks for a given frame.
Fig. 1 plots the J&F score on DAVIS’17 val for differ-
ent temporal history lengths. It can be seen that increas-
ing the frame history from 1 to 4 frames yields an ap-
proximately linear performance improvement from 74.3 to
77.2. Thereafter, the J&F saturated at 7 frames at a J&F
score of 77.5. Recall that because we only need the ob-
ject/background descriptors for past frames rather than the
full feature maps, the inference run-time is minimally af-
fected by the temporal history length: increasing the tem-
poral history from 1 to 10 frames only reduces the infer-
ence speed from 17.3 to 16.7 frame/s (reported speed is an
average over 5 runs).
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Figure 1. Temporal History: Performance on DAVIS’17 val for
different temporal history lengths during inference.

II. Object Descriptors for Re-Identification
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Figure 2. Retrieval Task: Precision-Recall curve for retrieval task
on all object instances in DAVIS’17 val.

Our object descriptors are trained to encode an object’s
appearance so that it can be re-segmented, i.e. segmented
in another video frame. Here we explore the applicabil-
ity of these descriptors for a re-identification/retrieval task.
For this, we consider the set of object descriptors for all
frames for all video sequences in the DAVIS’17 validation
set. For each descriptor, we calculate the Euclidean dis-
tance to all other descriptors, and then use these distances
to retrieve other descriptors belonging to the same object
instance. The resulting precision and recall is used to gen-
erate the precision-recall curve in Fig. 2 by averaging the
retrieval scores across all descriptors.

Looking at the curve, we see that for each descriptor, ∼
50% of the other descriptors belonging to the same object
instance can be retrieved with a fairly high recall of∼ 80%.
Thereafter, the precision drops off sharply. Note, however,
that this plot does not reflect the full quality of the object
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descriptors for the Video Object Segmentation (VOS) task
due to two main reasons:

1. This experiment disregards the image feature maps and
directly compares the descriptors to one another. In the
actual VOS use-case, we compute the dot-product be-
tween descriptors and image features to produce per-
pixel logits which are then optimized to correctly seg-
ment the given object. In this experiment however,
we directly compute the Euclidean distance between
the descriptors themselves. Recall from Sec. 2 of the
main text where we discussed that ”Object-object Cor-
respondence” based method use such re-identification
techniques for associating objects over time. HODOR
by contrast is an ”Object-pixel Correspondence” based
method.

2. For this experiment, we expect the network to learn
descriptors which separate objects globally, i.e. across
different video sequences. During training however,
the network was only trained to distinguish between
objects in the same image (or image sequence).

We hence conclude from this experiment that the ob-
ject descriptors learned by our network can be used for
re-identification tasks. However, the distribution of the de-
scriptors for a given instance do not follow a unimodal dis-
tribution. This results in the sharp drop-off in recall seen in
Fig. 2.

III. Visualizing Descriptor Feature Space
We attempt to visualize the object descriptors by project-

ing the 256-D object descriptors for all object instances in
the DAVIS’17 validation to 2-D using t-SNE [4]. The re-
sulting visualization is shown in Fig. 3 wherein the object
crop for each descriptor is pasted at the projected 2-D co-
ordinates. We can clearly see that descriptors for the same
object instance are tightly clustered in a trajectory-like se-
quence. Though not visualized here, we observed that the
trajectory-like shape usually corresponds to the frame in-
dex, which means that the descriptors tend to drift slightly
over time.

We can also see a strong semantic trend in the descrip-
tors. The lower-right portion of the image contains several
of the ‘car objects, the top-right contains several riders (i.e.
persons righting motorbikes, bicycles, horses). The center
portions generally contains persons, and the lower-left por-
tion of the image contains several animal classes e.g. cow,
dog, goat. There are, however, noticeable exceptions. Note
how there is a cluster of three fish on center-right, but the
remaining two fish are very far away from them and each
other.

Given that applications based on object embeddings of-
ten use a simple linear projection for further processing, we

also visualize the object descriptors by projecting them to
2-D using Principal Component Analysis (PCA). The re-
sulting illustration is given in Fig. 4. Here, in general, the
descriptors are less distinguishable from each other, but the
overall trend still holds true, i.e. descriptors for the same
instance and similar semantic classes are generally located
close to one another.

IV. Background Descriptors

In Sec. 3 of the main text, we explained how HODOR
uses high-level descriptors to model the foreground objects
and also the background. For the latter, all non-object pix-
els are combined into a background mask which is then
split into 9 separate masks by dividing it into a 3 × 3 grid.
One further minor architectural detail is that aside from
the 9 background descriptors, we also predict an additional
‘catch-all’ background logit for each pixel. To do this, we
apply a 3 × 3 convolution followed by a 1 × 1 convolu-
tion to the refined feature map F 4(L) in the decoder (cf .
Eq. 4 in the main text) to obtain a single-channel logit map.
Then, before computing the softmax over the descriptors,
we append the logit value for each pixel, representing an-
other background descriptor. Formally speaking, Eq. 4 of
the main text changes to the following:

F 4(L) ←− Conv
(
F 4 + upsample2(F 8(L))

)
Mbc ←− Conv

(
Conv

(
F 4(L)

))
M ′ ←− Concatenate

(
F 4(L) ·D,Mbc

)
M ←− softmax (upsample4 (M ′))

(1)

whereMbc is the background catch-all logit map andM ′

is an intermediate variable used to denote the concatenation
of the dot-products F 4(L) ·D and Mbc.

Note that these catch-all background logits are not prop-
agated frame-by-frame when processing a video sequence.
Without this technique, we obtain a J&F of 76.2 on
DAVIS’17 val, which is 1.3 lower than the 77.5 reported
in Table 1 of the main text.

Some example probability heatmaps for both the catch-
all, as well as the 3 × 3 background grid can seen in Fig. 6
and 7. Note how the catch-all logits have high magnitudes
mostly around object edges. The background descriptors
sometimes associate themselves to an object-like region e.g.
to the bush in the horsejump-high sequence (bottom-right
descriptor), or to the black box/case in the bike-packing se-
quence (bottom-right descriptor). In general, we an also see
a location bias based on the background mask patch which
each descriptor was made to focus on by the encoder.



Figure 3. Object Descriptor Visualization: The descriptors for all object instances in DAVIS’17 val projected to 2-D using t-SNE.

V. Failure Cases

Fig. 5 illustrates some failure cases for our method. In
the first, fourth and fifth columns, we see that HODOR in-
correctly merges two difference instances because they are
visually similar and spatially close to each other. In column
two, we see that the method struggles to accurately segment
the strings of the parachute, and likewise in column three
we see that the bicycle in not correctly segmented. Since
HODOR mainly operates on feature maps at the 8× down-

sampled level w.r.t the input resolution, it often struggles
with small objects.

VI. Implementation Details

Input Image Dimensions. For training, the input image is
resized in an aspect-ratio preserving manner such that the
pixel area is ∼ 300,000 and the lower dimension is an inte-
ger multiple of 32. During inference, the images are resized
to have lower dimension 512.



Figure 4. Object Descriptor Visualization: The descriptors for all object instances in DAVIS’17 val projected to 2-D using PCA.

Loss Function. To supervise the predicted masks, we use
the sum of the cross-entropy loss and the DICE loss (both
weighted by unity).

Learning Rate Schedule. When training on COCO [3],
the learning rate is first warmed up from 0 to 10−4 over
10k iterations. Then at 100k iterations we apply step de-
cay and reduce the learning rate to 10−5. The training is
then run for a further 150k iterations. For training on an-
notated video frames (both augmented frames and cyclic

consistency), we fine-tune the network by loading weights
from the COCO augmented sequence checkpoint, and then
warm-up the learning rate from 0 to 10−5 over 10k itera-
tions. The network then trains for a further 10k iterations
with constant learning rate. Since there are only ∼ 3500
labeled image frames under this setting, the model tends to
over-fit if trained longer.

Training Time. The main training on COCO for 250k
iterations requires ∼ 2 days on 4 Nvidia 3090 GPUs. The



Figure 5. Failure Examples: From left to right: First three columns show the camel, paragliding-launch and bmx-trees sequences from
the DAVIS. Last two columns show sequences 282651c6f7 and c280d21988 from YouTube-VOS.

fine-tuning for 20k iterations requires less than 6 hrs.

Soft Attention-masking Scaling Factors. In Sec. 3.1
of the main text, we explained our novel attention-
masking mechanism which applies an additive offset to the
KeyT Query matrix. The offset is the mask value scaled by
a positive scalar α. We initialize α separately for each of
the 8 attention heads as follows: [32, 32, 16, 16, 8, 8, 4,
4]. These are applied as learnable parameters which can be
optimized by the network.

Image Augmentations. For the results reported in Table 2
of the main text, we trained on image sequences generated
by applying random affine transformations to COCO im-
ages. We use the popular imgaug library [2] for this task.
The range of values for each transformation type are as fol-
lows:

• Translation: 0− 25% w.r.t the dimension size.
• Rotation: 0− 10% in both directions.
• Shear: 0− 10% along both axes.
• Crop: 60− 90% of the image is retained.

Note that each image in the training image sequence is
generated by applying the transformations to the original
image, i.e. we do not apply sequential augmentation. Aside
from these geometric augmentations, we also apply color
augmentations as follows:

• Hue : 0− 12%

• Saturation: 0− 12%

• Contrast (linear): 0− 5%.
• Brightness: 0− 25%

Our color augmentation strategy is inspired from that
used by Cheng et al. [1] for STCN.

VI.1. Qualitative Results Video

The zip file for our supplementary material contains a
short video file with qualitative results for some video se-
quences from the DAVIS’17 val set. Additionally, there
are a couple of video snippets from the popular Game of

Thrones TV series where annotated the first frame mask
ourselves for the ‘Hodor’ character who is the namesake
for our method name.
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Figure 6. Background Descriptor Visualization: Each block shows the ground truth foreground object mask(s) (top left) and a total of
10 background probability heatmaps, corresponding 1 catch-all heatmap (mid left) and the full 3× 3 background grid heatmaps (columns
2-4). Not the location bias in the 3 × 3 grid, where the grid-based background descriptor initialization sometimes causes the background
descriptors to attach to a nearby object.



Figure 7. Background Descriptor Visualization (continued): Each block shows the ground truth foreground object mask(s) (top left) and
a total of 10 background probability heatmaps, corresponding 1 catch-all heatmap (mid left) and the full 3× 3 background grid heatmaps
(columns 2-4). Not the location bias in the 3 × 3 grid, where the grid-based background descriptor initialization sometimes causes the
background descriptors to attach to a nearby object.
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