
Deep Equilibrium Optical Flow Estimation: Appendix

Shaojie Bai1* Zhengyang Geng2* Yash Savani1 J. Zico Kolter1,3

1Carnegie Mellon University 2Peking University 3Bosch Center for AI
{shaojieb,ysavani,zkolter}@cs.cmu.edu zhengyanggeng@gmail.com

Algorithm 1 DEQ flow (PyTorch-style). Note that we reuse
the fixed point and perform fixed-point correction.

solver: fixed-point solver, e.g., Broyden [2].
func: layer fθ that defines dynamic system
dist: loss function for fixed point correction
x: input information xt = (qt, Ct) of frame t,

whose flow estimation we want to compute
z: fixed-point flow estimation z∗

t
freq: frequency of correction.
gamma: coefficient of correction.
prev_z: z∗

t−1 of the last frame (if exists)

training: bool indicating training/inference.

Forward pass (w/ backward pass by autodiff)
def forward(x, f, gamma, freq=1,

training=True, prev_z=None):
with torch.no_grad():

Fixed-Point Reuse
z, z_m = solver(func, x, freq, z0=prev_z)

if training:
loss = dist(f, func(z, x))
Fixed Point Correction w/ 1-step gradient
for i in range(freq):

z_mi = func(z_m[i], x)
loss += gamma[i] * dist(f, z_mi)

return z, loss
return z

A. Pseudo Code
We provide a PyTorch-style [1] pseudo-code for the DEQ

flow in Alg. 1. Besides fixed-point reuse and an inexact
(one-step) gradient as shown previously, we also include the
fixed-point correction loss (applied with frequency freq).
In practice, we set freq= 1, and use either Broyden’s
method [2] or Anderson acceleration [3] for solver. This
sparse fixed-point correction scheme encourages stable train-
ing dynamics, which we analyze further in Fig. 1.

B. Experiment Settings
In this section, we present the detailed experiment settings

for training and inference with the DEQ flow estimators. The

*Equal contribution.

code will be made publicly available upon acceptance.

B.1. Model Design

As mentioned previously, a deep equilibrium (DEQ) flow
estimator subsumes a wide variety of model designs, and can
be integrated with the latest, cutting-edge update operators.
We show the integration of two of the most prominent de-
signs that have achieved state-of-the-art optical flow results
below, while noting in general that other alternatives are also
possible.

DEQ flow by RAFT. Without any modification to the
original design of RAFT [4], we can instantiate a DEQ-
RAFT by defining the equilibrium system as follows,

x = Conv2d
(
[q, f∗, C(f∗ + c0)]

)
h∗ = ConvGRU (h∗, [x, q])
f∗ = f∗ + Conv2d (h∗) ,

(1)

where C(f∗ + c0) stands for the correlation lookup as in
RAFT [4], Conv2d stands for 2D convolutional layers with
ReLU activations, and ConvGRU represents a GRU-style
gated activation following convolutions, respectively. We
refer the readers to Teed and Deng [4] and the code base1

for more details.

DEQ flow by GMA. More recently, Jiang et al. [5] show
that we can improve on the formulation of RAFT above by
adding an attention module to better model the occlusion
scenarios in video frames. Specifically, we also provide an
instantiation of such Global Motion Aggregation (GMA)
update operator [5] in the context of DEQ flows, where we
solve for the equilibrium z∗ = (h∗, f∗) that satisfies

x = Conv2d
(
[q, f∗, C(f∗ + c0)]

)
x̂ = Attention (q, q, x)
h∗ = ConvGRU (h∗, [x̂, x, q])
f∗ = f∗ + Conv2d (h∗)

(2)

where Attention is a self-attention-based operation module,
see [5, 6].

1https://github.com/princeton-vl/RAFT

1

https://github.com/princeton-vl/RAFT

0 200 400 600 800 1000
Training Steps (×1000)

0

10

20

30

40

50

60

70

80

||f
(z

)
z|

|

IFT
IFT w/ JR
Correction

IFT IFT w/ JR Correction
Methods

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

AE
PE

0.97

1.03

0.93

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
la

tiv
e

Ra
tio

1.00 1.06 1.00

1.64
1.80

1.00

AEPE
Rel Memory
Rel Runtime

(a) Training stability (b) Training cost and generalization performance

Figure 1. Comparison of canonical IFT, Jacobian Regularization and Fixed-Point Correction. Given a limited forward solver budget,
the fixed-point correction protocol successfully stabilizes training and shows accelerated fixed-point convergence with visible performance
improvements over Jacobian Regularization [7] for DEQ.

Model Hyperparameters For the base models, DEQ-
RAFT-B and DEQ-GMA-B, we employ the exact same ar-
chitecture and hyperparameter choice for the equilibrium
module fθ as originally used by RAFT [4] and GMA [5].
We merely replace the recurrent (and BPTT-based) formula-
tion with a fixed-point system-based one (and the backward
pass with IFT and inexact gradients). For DEQ-RAFT-D,
we reparameterize all the linear projections of the ConvGRU
layer in Eq. (1) by convolutional layers using kernel sizes
of 1× 5, 5× 1, and 3× 3 with a dilation rate of 4, and then
duplicate the ConvGRU layer of fθ. For the Large models
and Huge models, i.e., DEQ-RAFT-L, DEQ-GMA-L, and
DEQ-RAFT-H, we use the same designs as the backbone
models while increasing the number of hidden dimensions
by a factor of 1.5× and 2×, respectively.

B.2. Training Details

Following the settings of prior work [4, 5, 8], we apply a
four-stage training protocol using the default hyperparame-
ters unless specified otherwise. First, we train DEQ-RAFT-L
and DEQ-RAFT-H models on FlyingChairs [9] for 120K
iterations and then on FlyingThings [10] for another 120K
iterations. In addition, we also train a DEQ-GMA instan-
tiation on FlyingChairs [9] using a batch size of 10 and a
learning rate of 4e-4, with the same setting as RAFT [4].
We note that the original recurrent GMA model quickly ex-
hausts the memory budget even with a much smaller batch
size and mixed-precision training, which is not a concern for
DEQ-GMA due to the implicit modeling framework.

We used an Anderson acceleration [3] solver with up
to 40 forward steps and 1 correction term for the base
model (DEQ-RAFT-B). For the larger models (DEQ-RAFT-
L, DEQ-RAFT-H, DEQ-GMA-B, and DEQ-GMA-L) we
used an Anderson solver with up to 36 forward steps and 1-2
correction terms. For DEQ-RAFT-D, we used a Broyden [2]
solver with up to 21 steps and 2 correction terms. Our im-

plementation of the fixed point solvers is based directly on
that of Bai et al. [11]. In all those cases, the fixed-point
solvers stop either when the iterations reach the limit, or if
the absolute residual error falls below 1. Moreover, note
that we use one-step gradient, which suggests almost-free
backward passes. Our results suggest that, with minimal
tuning, these settings are sufficient to achieve state-of-the-
art results (while imposing much lower compute and memory
cost). For the last training stage, we fine-tune DEQ-RAFT-
D on KITTI [12] using 30 solver steps. Empirically, we
note that a DEQ flow model trained using a stronger solver
(e.g., the Broyden solver) and with more steps typically leads
to slightly better performance. This implies the prospect of
potentially further boosting the DEQ-flow performance by
more precise fixed-point solving; e.g., with more advanced
(or even learnable) solvers. All the experiments were con-
ducted on two 11 GB GPUs (NVIDIA 2080Ti’s).

C. DEQ Flows with Fixed-point Correction
The growing instability problem has been a longstanding

challenge in training implicit neural networks like DEQs.
One of the contributions of this paper is also the introduction
of fixed-point correction term to stabilize the DEQ flow
estimation convergence. Specifically, previous methods rely
on more constrained regularization settings such as Jacobian-
based losses [7], i.e., penalizing the upper bound of Jacobian
spectral radius,

ρ(Jfθ (z
∗)) ≤ ∥Jfθ (z∗)∥F =

√
tr(J⊤

fθ
Jfθ),

where Jfθ (z
∗) ∈ Rd×d denotes the Jacobian of fθ at z∗, ρ

corresponds to the spectral radius of a square matrix. By the
stochastic Hutchinson trace estimator [13], we have

tr(J⊤
fθ
Jfθ) = Eϵ∼p(ϵ)

[
ϵ⊤J⊤

fθ
Jfθϵ

]
≈

∑
ϵ∼p(ϵ)

∥Jfθϵ∥22,

where p(ϵ) can be the Gaussian distribution N (0, Id) or
the Rademacher distribution. Different from prior works,
we advocate for exploiting the benefit of IFT and inexact
gradient to sparsely apply a fixed-point correction scheme
to the convergence path.

In this section, we present an ablation study on Fly-
ingChairs [9] that compare the stability and generalization
performance of DEQ flow models trained in three different
settings: 1) standard implicit differentiatio (i.e., IFT); 2)
standard IFT with Jacobian regularization [7]; and 3) our
proposed fixed-point correction scheme with a single correc-
tion term. As mentioned previously, we perform one-step
inexact gradient on the correction loss as well. For the pur-
pose of this ablation, we run the forward fixed-point solver
for a limited compute budget of 16 Anderson [3] steps in
all three settings, and analyze their convergence behavior
accordingly.

As shown in Fig. 1, the model trained using the standard
implicit function theorem (IFT) suffers from the “growing
instability” issue (see red curve in Fig. 1 (a)), as described
in prior works indeed [7, 11, 14, 15]. While strong enough
Jacobian regularization can indeed stabilize the training pro-
cess and lead to good overall convergence (see orange curve
in Fig. 1 (a)), we observe that it is usually at a heavy cost
of optical flow estimation accuracy (see Fig. 1 (b)). This
agrees with the conclusion of Bai et al. [7]. In contrast, we
find it suffices to use a single fixed-point correction term in
DEQ flow to achieve the same stabilizing effect (see blue
curve in Fig. 1 (a)) at no extra cost to the average EPE on
the validation set. We hypothesize that such a fixed-point
correction method may suggest an elegant and lightweight
solution to the growing instability problem in the broader
implicit deep learning community as well (i.e., beyond the
scope of optical flow estimation), which we leave for future
work.

D. Qualitative Results

We visualize the flow estimation by the DEQ flow model
in Fig. 2, Fig. 3, Fig. 4, Fig. 5, and Fig. 6, using consecutive
frames of the MPI Sintel [16] test set.

References
[1] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-performance Deep Learning Library.
In Neural Information Processing Systems (NeurIPS), pages
8026–8037, 2019. 1

[2] Charles G Broyden. A Class of Methods for Solving Nonlin-

ear Simultaneous Equations. Mathematics of computation, 19
(92):577–593, 1965. 1, 2

[3] Donald G. Anderson. Iterative procedures for nonlinear inte-
gral equations. Journal of the ACM (JACM), 12(4):547–560,
October 1965. 1, 2, 3

[4] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020. 1, 2

[5] Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li, and
Richard Hartley. Learning to estimate hidden motions with
global motion aggregation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
9772–9781, October 2021. 1, 2

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Neural Information
Processing Systems (NeurIPS), 2017. 1

[7] Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Stabilizing
Equilibrium Models by Jacobian Regularization. In Interna-
tional Conference on Machine Learning (ICML), 2021. 2,
3

[8] Shihao Jiang, Yao Lu, Hongdong Li, and Richard I. Hartley.
Learning optical flow from a few matches. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 16587–16595, 2021. 2

[9] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser,
Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt,
Daniel Cremers, and Thomas Brox. Flownet: Learning optical
flow with convolutional networks. In Proceedings of the
IEEE international conference on computer vision, pages
2758–2766, 2015. 2, 3

[10] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 4040–4048, 2016. 2

[11] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equi-
librium models. In Neural Information Processing Systems
(NeurIPS), 2019. 2, 3

[12] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013. 2

[13] Michael F Hutchinson. A stochastic estimator of the trace of
the influence matrix for laplacian smoothing splines. Com-
munications in Statistics-Simulation and Computation, 18(3):
1059–1076, 1989. 2

(a) Frame 12 (b) Frame 13 (c) Frame 14 (d) Frame 15

Figure 2. Visualization on the Sintel test set, ambush_1 sequence of the clean split.

(a) Frame 34 (b) Frame 35 (c) Frame 36 (d) Frame 37

Figure 3. Visualization on the Sintel test set, cave_3 sequence of the clean split.

(a) Frame 25 (b) Frame 26 (c) Frame 27 (d) Frame 28

Figure 4. Visualization on the Sintel test set, market_1 sequence of the clean split.

(a) Frame 25 (b) Frame 26 (c) Frame 27 (d) Frame 28

Figure 5. Visualization on the Sintel test set, bamboo_3 sequence of the final split.

(a) Frame 25 (b) Frame 26 (c) Frame 27 (d) Frame 28

Figure 6. Visualization on the Sintel test set, temple_1 sequence of the final split.

[14] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equations.
In Neural Information Processing Systems (NeurIPS), 2018.
3

[15] Ezra Winston and J. Zico Kolter. Monotone operator equilib-
rium networks. In Neural Information Processing Systems
(NeurIPS), pages 10718–10728, 2020. 3

[16] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J
Black. A naturalistic open source movie for optical flow
evaluation. In European conference on computer vision, pages
611–625. Springer, 2012. 3

