
Generalizable Human Pose Triangulation
- Supplementary Appendix -

The main focus of the Supplementary Appendix is to
demonstrate the application of the proposed model to novel
camera arrangements and datasets that have unknown rel-
ative camera poses, i.e. extrinsic parameters Eref, i =
[Rref, i|tref, i], where ref is the reference camera, and i is
each of the relative cameras. The camera poses are esti-
mated based on the fundamental matrix estimation method
described in the main paper. We further dissect relative
camera pose estimation into the estimation of relative ro-
tation, Rref, i, and relative translation, tref, i, showing that the
unknown translations have more significant impact on the
performance than the unknown rotations (Appendix 1). Fi-
nally, we briefly discuss other works, implementation de-
tails, and the limitations of the model in more detail and pro-
pose future work, in addition to the main paper (Appendix
4). The ethical considerations are addressed in Appendix 5.

1. Performance with Estimated Camera Poses
We evaluate the performance of the generalizable human

pose triangulation model in case when the camera poses
are estimated using the proposed fundamental matrix es-
timation method, on Human3.6M. In particular, we com-
pare the performances between the test sets with known ex-
trinsics, estimated relative rotations Rref, i, estimated rela-
tive translations, tref, i, and estimated extrinsics (both rota-
tion and translation). Additionally, we compare the perfor-
mances when Human3.6M is used as the training dataset
(base-dataset experiment), and when CMU3, described in
the main paper, is used for training (inter-dataset experi-
ment).

The results are shown in Table 1. As expected, the per-
formance on the base dataset is better than the performance
on inter-dataset experiment. In overall, the performances
on both the base experiment and inter-dataset experiment
are satisfactory, taking into account that the rotations, trans-
lations, i.e. both, are unknown. Notably, the performance
of the model significantly drops for unknown relative trans-
lations, while the unknown relative rotations only slightly
affect the performance. We assume that the rotations are
simply estimated more accurately than translations, hence
the difference. To verify this assumption, we analyze 2D
and 3D errors, defined in the main paper, for estimated ro-

Table 1: The evaluation of the model in case of unknown
relative camera poses on Human3.6M [4]. We evaluate the
model in base-dataset (same camera arrangement for train-
ing and testing) and inter-dataset (from CMU3 [6] to Hu-
man3.6M). We also dissect the analysis into the cases when
rotation, i.e., translation only is unknown. Note that all Rs
and ts shown in the table correspond to Rref, i and rref, i, but
are abbreviated.

Base dataset (Human3.6M)
Known [R|t] Estimated R Estimated t Estimated [R|t]

29.1 mm 29.4 mm 36.7 mm 37.3 mm
Inter-dataset (CMU3 → Human3.6M)

Known [R|t] Estimated R Estimated t Estimated [R|t]
31.0 mm 33.6 mm 42.2 mm 44.5 mm

tations, i.e., translations separately.
Ablative Analysis of Camera Pose Estimation. Ta-

ble 2 shows the fundamental matrix estimation errors (E2D

and E3D, described in the main paper) between the pairs
of views, in case when only rotation is estimated and the
translation is known, and vice versa. The errors in case of
the estimated translations are always higher compared to the
case of estimated rotations, therefore, this result might ex-
plain the performance drop shown in Table 1. The future
work should focus on improving translation estimation.

Table 2: Dissecting the evaluation of fundamental matrix
estimation on two cases — when the rotations, i.e., the
translations are estimated, for all pairs of views on Hu-
man3.6M. The 2D errors, E2D are shown in pixels, and 3D
errors, E3D are shown in millimeters.

Estimated R Estimated t

Camera pair E2D E3D E2D E3D

(1, 3) 1.2 10.8 1.8 18.2
(2, 4) 0.9 9.7 1.6 15.3
(1, 4) 0.9 6.4 1.2 8.9
(2, 3) 0.6 3.9 1.0 4.5
(3, 4) 0.4 1.2 0.7 4.0
(1, 2) 0.4 1.8 0.7 3.7
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Table 3: The Table of hyperparameters for the two tasks.

3D pose Camera

Learning rate 5 ∗ 10e−4 10e−5

τ 1.5 1.2
α, β, γ (1.0, 0.01, 0.02) (1.0, 0.01, 0.0)

Network layer sizes
(1000, 900 (1000,

900, 900, 700) 900, 900)
# hypotheses in sample 200 100

Batch size 16 16

2. Other Works

The Epipolar Transformers [3] outperforms our method
on Human3.6M (base dataset). However, note that our
model outperforms their lightweight, transformer model on
H36M (30.4mm, Table 6 [3], compared to our 29.1mm, Ta-
ble 4, main paper). The difference in performances would
most likely increase when evaluated on novel views, espe-
cially as the authors did not tackle the generalization prob-
lem at all. Further, their heavy-weight model might over-
fit even more on the base camera arrangement of the train
dataset(s), so we can expect an increased performance drop
on unseen views.

3. Implementation Details

The selected hyperparameters set is shown in Tab. 3. The
two hyperparameters used specifically for pose triangula-
tion, i.e., fundamental matrix estimation, are the number of
joints in the pose model, J = 17, and the number of frames
from which the camera hypotheses are sampled, M = 80.

The required number of training iterations is relatively
small. We obtain our best results using only 500 iterations.
In each iteration, we generate 200 hypotheses. This is a
great advantage of the approach, especially when only small
amount data annotations are required. In particular, 500 it-
erations correspond to 500 data samples, i.e., 500/16≈32
batches (batch size 16, Table 3), meaning that the gradients
were applied ≈32 times for the model to be fully trained.
It takes about 3 minutes to train the model, but this can
be further improved by more efficient implementation of
the hypothesis generation on CPU. Moreover, the training
time is shorter, which simplifies the optimal hyperparameter
search. Finally, the current implementation fits into ∼1GB
of GPU memory.

4. Limitations

The main limitation of our model is that it strongly de-
pends on the performance of the 2D detector [7]. This is
best seen in Table 4 that shows the difference in the per-

Table 4: The comparison between train, validation, and test
performance on Human3.6M (in case of base-dataset con-
figuration). There is a significant difference in the perfor-
mance between train (validation) and test.

Human3.6M
Train Validation Test

13.8 mm 14.2 mm 29.1 mm

formance on train, validation, and test1. The difference be-
tween the validation and test performance, in particular, can
be explained by the fact that the 2D backbone has been fine-
tuned on the whole training and validation splits, while it
has never seen the test data. What this means is that we
did not tackle the problem of train-to-test generalization;
instead, we improved the between-test-sets generalization,
which is a weaker result. The consequence of this train-test
difference is that the performance on novel data will suffer
mostly from the performance drop of the detector.

Another limitation is that the current model does not
learn end-to-end. The consequence is that the model, at
best, learns to differentiate well between the poses. But
once the poses are good enough, the network can’t dif-
ferentiate further and will simply assign the same scores,
converging into an average of ”good-enough” 3D poses2.
Therefore, future work should definitely address this limita-
tion by exploiting image features to obtain additional infor-
mation about the keypoints. One way to use image features
is through the confidence predictions, similar to previous
works [5, 1, 2].

Finally, we assume that the intrinsic camera parameters
and the scale are known.

5. Ethical Considerations

For all of our experiments, we use two well-known,
public datasets — Human3.6M and CMU Panoptic Stu-
dio. From the information obtained from the corresponding
websites, it is unclear whether the datasets have the IRB ap-
provals. We verified with the authors of the Panoptic Studio
that the dataset has the approval. We also contacted the au-
thors of Human3.6M, but did not get the confirmation at the
moment of writing.
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