
A. Proofs
Here, we provide proofs, and other theoretical details, left out in the the main text.

A.1. Spaces of point clouds

In the main paper, we have, in the interest of readability, intentionally refrained from being too formal. In particular, we
have equated point clouds with vectors in Cm in a quite streamlined fashion. As we want to present formal proofs here, this
will no longer suffice. In particular, since we are aiming to apply the Stone-Weierstrass theorem, we will need to consider
the point clouds as points in a metric space. We will therefore consider the following well-known approach (the same ideas
were applied in e.g. [20, 30].)

Definition 5. For a subgroup G ⊆ Sm, let ∼G denote the equivalence relation

Z ∼G W ⇔ ∃π ∈ G,Z = π∗W

on Cm. We can equip the set of equivalence classes Cm/ ∼G with the metric

dG(Z,W ) = inf
π∈G

||Z − π∗W ||.

For G = Sm, we denote the resulting metric space Pm. For G = Stab(0), we denote it Pm
0 .

On Pm and Pm
0 , we may define a further equivalence relation via Z ∼S W ⇔ Z = θW for some θ ∈ S. We can again

define a metric on the set of equivalence classes under this relation via

dS(Z,W ) = inf
θ∈S

dG(Z, θW ),

where dG is the metric from above. We call the resulting metric spaces RPm and RPm
0

In the following, we will without comment equip all spaces of continuous functions with the topology induced by the
supremum norm on compact sets. If M is a metric space, we let C(M) denote the space of complex-valued continuous
functions on M .

Remark 6. (i) It is clear that permutation invariant functions F ∈ C(Cm) can be identified with functions in C(Pm). If
they are additionally rotation invariant, we can even identify them with functions on C(RPm). Similar statements hold for
C(Pm

0 ) and C(RPm
0 ).

(ii) In the following, we will sometimes consider expressions in which functions defined on Pm
0 , or Cm, are applied to

members in Z ∈ Pm. This is clearly in general not formally well-defined. However, in each such expression, there are other
operations present which makes the object per se well defined again. For instance, νi(Z) = |zi| is not well defined on Pm,
but ν(Z) = supi∈[m] |zi| is. In the interest of readability, we will not comment on this in detail every time.

A.2. Proof of Proposition 1

Let us begin by proving the no-go result of Proposition 1, stating that the most straighforward way of making the pointnet
architecture rotation equivariant will not yield a universal architecture.

Proof of Proposition 1. Let us call a cloud Z for which all points have the same norm and obey
∑

i∈[m] zi = 0 balanced.
We claim that every function of the form χ(

∑
i∈[m] ϱ(zi)) is constant on the set of balanced clouds.

To see this, let us first notice that if ϱ : C → CK is rotation equivariant, it must be possible to write it on the form
ϱ(z) = ν(|z|)z for some function ν : R+ → CK . A formal way to prove this is to notice that the function z 7→ zϱ(z) is
rotation equivariant, and hence can only depend on the modulus of z.

Now, if r is the common value for the norms in a balanced cloud Z, we have

χ
( ∑
i∈[m]

ϱ(zi)
)
= χ

(
ν(r)

∑
i∈[m]

zi
)
= χ(0).

Hence χ(Z) = χ(0) for all such clouds. To finish the proof, it is therefore enough to prove the existence function f ∈ R(m)
that is not constant on the set of balanced clouds.



Figure 6. The balanced cloud Z used in the proof of Prop 1. Note that among the pairwise distances |zi − zj |, only |z1 − z2| is equal to
2
√
5/3.

Towards this endeavour, let a : R → C be a function and consider

f(Z) =
∑

i<j∈[m]

a (|zi − zj |) ·
∑

k/∈{i,j}

zk

That is, in words; First, for each pair zi, zj of points, calculate a(|zi − zj |) and multiply that with the sum of the rest of the
points. Then sum over the set of such pairs. It is not hard to realize that such functions are members of R(m).

Now let a, for some ϵ > 0, be equal to 1 in 2
√
5/3 and zero outside [2

√
5/3 − ϵ, 2

√
5/3 + ϵ]. Then, if Z is a cloud with all

pairwise distances smaller than 2
√
5/3− ϵ, f(Z) = 0. There exists balanced clouds with that property for all m. Therefore, if

f is constant on the set of balanced clouds, we must have f(Z) = 0 for all such. We can however construct a balanced cloud
for which f(Z) ̸= 0 as follows:

Let us first assume that m = 2k + 3 is odd. We define

z1 = i, z2,3 = −2i

3
±

√
5

3
, z2ℓ,2ℓ+1 =

i

6k
±

√
36k2 − 1

6k
.

All points in these clouds have the norm 1, and

m∑
k=1

zk = i− 4i

3
+ 2k · i

6k
= 0.

Note that we used that the real parts of the points cancel each other. Thus, the set is balanced. (See also Fig. 6).
Now, by calculating all distances between points, we see that |z1 − z2| = 2

√
5/3, and that all other pairwise distances

|zi − zj | for (i, j) ̸= (1, 2) are unequal to 2
√
5/3. Therefore, if we choose the parameter ϵ from above small enough, we get

a(|zi − zj |) =

{
1 if i = 1, j = 2

0 else,

and

f(Z) =
∑

k/∈{1,2}

zk = i+ 2k · i

6k
=

4i

3
̸= 0.

Hence, f is not constant on the set of balanced clouds, and the argument is finished.
In the case of even m, we proceed as above, but interchange z0 = i with the two points z−1,0 = 0.5i±

√
3
2 . The argument

then proceeds just as above.



A.3. Proof of Theorem 2

Here, we prove that functions of the form
∑

i∈[m] γ(τ
∗
i Z)zi are dense in R(m). Before starting the actual proof, let us

agree on a simplifying notational convention. For a complex polynomial q, we will refer to the function

p(Z) = q(Z,Z).

as a real polynomial in Z. Note that the set of these functions is dense in C(Cm) with respect to supremum norm compact
sets, n.b.. To see this, note that the classical Stone-Weierstrass theorem states that for any N ∈ N the set of real polynomials
is dense in C(Rn). By equating Cm with R2m, we see that the space of real polynomials in the real and imaginary parts of
Z ∈ Cm,

r(re(Z), im(Z))

is dense C(Cm). Since we however for each such polynomial r can find a complex q with r(re(Z), im(Z)) = q(Z,Z) for all
Z, the claim follows.

Having established that density result we now move on to prove that in order to approximate functions in R(m), it is
enough to consider polynomials with the same equivariance properties. Similar statements have been proven in e.g. [8, 50].

Lemma 1. The set of real polynomials p that are permutation invariant and rotation equivariant is dense in R(m).

Proof. Let us first prove that it suffices to consider rotation equivariant polynomials, we argue as follows. For some multi-
indices α, β ∈ Nm, consider the ’real monomial’

µαβ(Z) = ZαZ
β
.

It is clear that µαβ is rotationally equivariant if and only if |α| = |β|+ 1. This together with the fact that 1
2π

∫
S θ

kdθ = δk,0
implies that ∫

S
θµαβ(θZ) dθ ̸= 0 ⇐⇒ µαβ rotationally equivariant. (3)

Also notice that if f is rotationally equivariant,

1
2π

∫
S
θf(θZ) dθ = 1

2π

∫
S
f(Z) dθ = f(Z).

Now fix a compact set K ⊆ Cm, which without loss of generality has the property Z ∈ K ⇔ θZ ∈ K, θ ∈ S. For
every f ∈ R(m), there exists a real polynomial p with supZ∈K |p(Z) − f(Z)| ≤ ϵ. We now split the monomial terms in p
according to whether they are rotationally equivariant or not. This defines two polynomials p0 and p1. Now notice that for
each Z ∈ K,

|f(Z)− p0(Z)| =
∣∣∣∣ 1
2π

∫
S
θ(f(θZ)− p0(θZ)− p1(θZ)) dθ

∣∣∣∣ ≤ sup
Z∈K

|f(Z)− p(Z)|

We used that p0 and f are rotationally equivariant, and also (3) together with the fact that p1 only consists of monomial terms
that are not rotationally equviarant. This means that the rotationally equivariant real polynomial p0 ∈ R(m) has a supremum
distance at most ϵ to f on K, and we hence we might as well use q to approximate f .

The permutation invariance part is now easily handeled by symmetrization. That is if, p is a non-symmetric polynomial
approximating f well, the symmetric polynomial

p̂(Z) = 1
|Sm|

∑
π∈Sm

p(π∗Z)

will approximate f just as good – see for instance [30].

With the previous lemma in our toolbox, the proof of Theorem 2 is relatively simple.



Proof of Theorem (2). Fix a compact set and a function f . By Lemma 1, there exists a real, symmetric and rotation equivari-
ant polynomial

p(Z) =
∑
α,β

cα,βZ
αZ

β
,

which is close to f . Since p is rotation invariant, it must be cα,β = 0 for all (α,β) with |α| ≠ |β|+ 1. Due to its permutation
invariance, we furthermore have cα,β = cπ∗α,π∗β for all π ∈ Sm and multiindices α, β. Hence, p consists of terms of the
form

qα,β(Z) =
∑

π∈Sm

Zπ∗αZ
π∗β

, |α| = |β|+ 1., (4)

and it is therefore enough to approximate such terms. Here, by the permutation equivariance, we can WLOG assume that the
indices αi are in ascending order. Consequently, we can write α = α̂+ e0 for some α̂ with |α̂| = |β|.

Now let us split the sum in (4) over Sm in accordance to the value of π(0)

qα,β(Z) =
∑
i∈[m]

∑
π(0)=i

Zπ∗(e0+α̂)Z
π∗β

=
∑
i∈[m]

∑
π(i)=0

Zπ∗α̂Z
π∗β

zi, (5)

where we in the last step used that π∗e0 = eπ(0) = ei. It is clear that we can write each π with π(0) = i as τi ◦σ for a unique
σ ∈ Stab(0). We have

Zπ∗α̂Z
π∗β

= Zτ∗
i σ

∗α̂Z
τ∗
i σ

∗β̂
zi

Since (τ∗i Z)
α = Zτ∗

i α, we see that our sum turns into∑
i∈[m]

∑
σ∈Stab(0)

(τ∗i Z)
σ∗α̂(τ∗i Z)

σ∗βzi =
∑
i∈[m]

γ(τ∗i Z)zi,

where we defined

γ(Z) =
∑

σ∈Stab(0)

Zσ∗α̂Z
σ∗β

The function γ is clearly Stab(0)-invariant, and also rotation invariant due to |α̂| = |β|. The proof is finished.

A.4. Stab(0)-equi- and invariant linear maps

Our architectures make heavy use of linear layers which are equi- and invariant to the action of the Stab(0) group. It is a
priori not clear how to construct such, and in particular parametrize all of them. In this section, we provide such a description.

We let K denote either of the fields R or C. For a tensor T ∈ (Km)⊗k, i.e. of order k, we define the action of a permutation
π ∈ Sm on T through

(π∗T )i0,...,ik−1
= Tπ−1(i0),...,π−1(ik−1).

This is exactly as in [29]. Let us begin by introducing some notation for the spaces we are interested in.

Definition 7. For k, ℓ ∈ N, we let L(k, ℓ) denote the space of linear operators L : (Cm)⊗k → (Cm)⊗ℓ which are Sm-
equivariant. The space of operators of the same kind which are Stab(0)-equivariant is denoted L0(k, ℓ).

Let us briefly comment on two special cases. First, if ℓ = 0, the spaces L(k, 0) and L0(k, 0) can be identified with the
space of invariant functionals of the respective kind. This is because of the fact that the action of Sm on scalars v ∈ K is
trivial. In the same manner, the spaces L(0, k) and L0(0, k) denote constant k-tensors which are invariant to the action of the
respective groups. Such elements can be used as biases in our architecture.

Remark 8. In our architecture, we are actually dealing with linear layers mapping multi-tensors to multi-tensors. It is
however clear that such a mapping can be seen as a matrix of linear maps Lij , where each Lij corresponds to one input-
output-channel pair. As such, it is enough to characterize the spaces L(k, ℓ) and L0(k, ℓ) to obtain a way to parametrize the
linear layers of our architecture.



Let us reiterate that the results of [29] give a complete characterization of the spaces L(k, ℓ)7. In brief, they identify such
maps as fixed points of a certain linear equation, which they then explicitly calculate. We refer to [29] for details.

In particular, the results in the mentioned paper prove that dimL(k, ℓ) ≤ Bk+ℓ, where Bn denotes the n:th Bell number.
As noted in [11], the dimension of the space cannot get larger than the dimension of the space of all linear maps from
(Km)⊗k to (Km)⊗ℓ, which is mk+ℓ. In all cases, the number of scalars needed to describe a map in L(k, ℓ) can be bounded
independent of m.

Our idea here is to link the spaces L0(k, ℓ) with spaces L(k′, ℓ′). In doing so, the following simple Lemma will be
convenient . For completeness. we include a proof.

Lemma 2. For k, ℓ in N , consider the map

Φk,ℓ : L 7→ λ, λ(S ⊗ T ) = ⟨S,L(T )⟩, T ∈ (Km)⊗k, S ∈ (Km)⊗ℓ.

Hereby, ⟨·, ·⟩ denotes the canonical scalar product on (Km)⊗ℓ, i.e.

⟨M,N⟩ =
∑

i0,...,iℓ−1

Mi0,...,iℓ−1
Ni0,...,iℓ−1

(i) Φk,ℓ is an isomorphism between the spaces of linear maps (Km)⊗k → (Km)⊗ℓ and functionals on (Km)⊗(k+ℓ).

(ii) Φkℓ maps L(k, ℓ) to L(k+ℓ, 0) and L0(k, ℓ) to L0(k+ℓ, 0). In particular, the respective pairs of spaces are isomorphic.

Proof. To not overload the notation, we fix k and ℓ and drop the index on Φ.
Ad (i): The linearity is evident. For proving the injectivity, suppose that λ = Φ(L) is the zero functional. That means per

definition that ⟨S,L(T )⟩ = 0 for all S ∈ (Km)⊗ℓ, which implies that L(T ) = 0 for all T in (Km)⊗k, i.e. that L = 0. The
surjectivity now follows from dimensionality considerations.

Ad (ii) We concentrate on the case of Sm-equivariant maps, since the Stab(0)-case is proven in exactly the same way. We
need to prove two things: First, we need to show that Φ(L) ∈ L(k + ℓ, 0) for all L ∈ L(k, ℓ). Secondly, we need to show
that for every λ ∈ L(k + ℓ, 0), the (unique) L with Φ(L) = λ is in L(k, ℓ).

To prove the former, let L ∈ L(k, ℓ) and π ∈ Sm be arbitrary. Writing λ = Φ(L), we have

λ(π∗(S ⊗ T )) = ⟨π∗S,L(π∗T )⟩ = ⟨π∗S, π∗L(T )⟩ = ⟨S,L(T )⟩ = λ(S ⊗ T ),

for each S and T . Note that we used the equivariance of L in the second step, and the (obvious) invariance of the scalar
product under permutations in the third. This exactly means that λ ∈ L(k + ℓ, 0).

To prove the latter, let λ ∈ L(k+ ℓ, 0), L = Φ−1(λ) and π ∈ Sm arbitrary. For S and T arbitrary, defining R = (π−1)∗S,
we then get

⟨S,L(π∗T )⟩ = ⟨π∗R,L(π∗T )⟩ = λ(π∗(R⊗ T )) = λ(R⊗ T ) = ⟨R,L(T )⟩ = ⟨π∗R, π∗L(T )⟩ = ⟨S, π∗L(T )⟩.

We used the invariance of λ in the third step, and the invariance of the scalar product in the fifth. Since S is arbitrary, this
proves that L(π∗T ) = π∗L(T ) for all T , i.e., L ∈ L(k, ℓ)

The above lemma links spaces of equivariant linear maps to spaces of invariant functionals, in an isomorphic fashion.
This means that in order to link the spaces L(k, ℓ) to the spaces L0(k, ℓ), it suffices to provide a link between one space of
functionals of the one kind to a space of equivariant maps of the other. This is the purpose of the following theorem.

Theorem 9. The map

Ψ : L(k, 1) → L0(k, 0), L 7→ λ, λ(T ) = ⟨e0, L(T )⟩

is an isomorphism. In particular, L0(k, 0) ≃ L(k, 1) and dim(L0(k, 0)) = Bk+1.

7Technically, they only state their theorems in the case K = R, but their proofs go through also for K = C



Proof. Let us begin by proving that Ψ is well-defined, i.e. that Ψ(L) ∈ L0(k, 0) for each L ∈ L(k, 1). Let σ ∈ Stab(0) be
arbitrary. Due to the equivariance of L and invariance of the scalar product, we then get

λ(σ∗T ) = ⟨e0, L(σ∗T )⟩ = ⟨e0, σ∗L(T )⟩ = ⟨(σ−1)∗e0, L(T )⟩ = ⟨e0, L(T )⟩ = λ(T ).

In the penultimate step, we used that (σ−1)∗e0 = eσ−1(0) = e0 for σ ∈ Stab(0). This means that λ is invariant, and that Ψ
indeed is well defined.

Now for the isomorphy. It is clear that Ψ is linear. To prove injectivity, assume that λ = Ψ(L) = 0. Due to the
equivariance of L, we then get for every i ∈ [m] and T ∈ (Km)k

0 = λ(τ∗i T ) = ⟨e0, L(τ∗i T )⟩ = ⟨τ∗i e0, L(T )⟩ = ⟨ei, L(T )⟩.

i.e. L = 0. To show surjectivity, let λ ∈ L0(k, 0) be arbitrary. Define a map L : (Km)⊗k → K through

⟨ei, L(T )⟩ = λ(τ∗i T ), i ∈ [m]

We then have Ψ(L)(T ) = ⟨e0, L(T )⟩ = λ(τ∗0T ) = λ(T ), i.e., λ = Ψ(L). If we can prove that L is equivariant, we are done.
So let π ∈ Sm and i ∈ [m] be arbitrary. A direct computation shows that τi ◦ π ◦ τπ−1(i) ∈ Stab(0). This, together with the
assumed invariance of λ, shows that

⟨ei, L(π∗T )⟩ = λ(τ∗i π
∗T ) = λ(τ∗i π

∗τ∗π−1(i)τ
∗
π−1(i)T ) = λ(τ∗π−1(i)T ) = ⟨eπ−1(i), L(T )⟩

= ⟨(π−1)∗ei, L(T )⟩ = ⟨ei, π∗L(T )⟩.

Since i is arbitrary, this means that L(π∗T ) = π∗L(T ), i.e., that L is equivariant. The proof is finished.

We can now use Lemma 2 and Theorem 9 to construct an isomorphism between L0(k, ℓ) and L(k, ℓ+ 1)

Corollary 1. L(k, ℓ+ 1) ≃ L0(k, ℓ). An isomorphism is given by

Ξ : L0(k, ℓ) → L(k, ℓ+ 1), L0 7→ K, K(T ) =
∑
i∈[m]

ei ⊗ τ∗i L0(τ
∗
i T ).

Proof. If Φk,ℓ and Ψ are as in Lemma 2 and Theorem 9, respectively, we define the isomorphism Ξ through the following
chain

L0(k, ℓ)
L0

Φk,ℓ→ L0(k + ℓ, 0)
λ0

Ψ−1

→ L(k + ℓ, 1)
L

Φk+ℓ,1→ L(k + ℓ+ 1, 0)
λ

Φ−1
k,ℓ+1→ L(k, ℓ+ 1)

K
.

It now only is left to prove that Ξ has the claimed form. For convenience, we named all of the intermediate objects above.
For u ∈ Km, S ∈ (Km)⊗ℓ and T ∈ (Km)⊗k, we calculate

⟨u⊗ S,K(T )⟩ = λ(u⊗ S ⊗ T ) = ⟨u, L(S ⊗ T )⟩ =
∑
i∈[m]

ui⟨ei, L(S ⊗ T )⟩.

Now, notice that since L ∈ L(k + ℓ, 1) and the scalar product is Sm-invariant, we have

⟨ei, L(S ⊗ T )⟩ = ⟨τ∗i e0, L(S ⊗ T )⟩ = ⟨e0, τ∗i L(S ⊗ T )⟩ = ⟨e0, L(τ∗i (S ⊗ T ))⟩.

Consequently ,∑
i∈[m]

ui⟨ei, L(S ⊗ T )⟩ =
∑
i∈[m]

ui⟨e0, L(τ∗i (S ⊗ T ))⟩ =
∑
i∈[m]

uiλ0(τ
∗
i S ⊗ τ∗i T ) =

∑
i∈[m]

ui⟨τ∗i S,L0(τ
∗
i T )⟩

=
∑
i∈[m]

ui⟨S, τ∗i L0(τ
∗
i T )⟩ =

∑
i∈[m]

⟨u, ei⟩⟨S, τ∗i L0(τ
∗
i T )⟩ = ⟨u⊗ S,

∑
i∈[m]

ei ⊗ τ∗i L0(τ
∗
i T )⟩.

Since u and S are arbitrary, we obtain the claim.



Figure 7. Definition of the space V(m).

We may now easily construct spanning systems of L0(k, ℓ) by, using the last corollary, transforming the spanning sets
of L(k, ℓ + 1) from [29]. In Section C, we carry this out and write down explicit spanning sets for the spaces L0(k, ℓ) for
0 ≤ k, ℓ ≤ 2.

Let us here only comment that the above Corollary in particular proves that dimL0(k, ℓ) = dimL(k, ℓ + 1) ≤ Bk+ℓ+1.
In particular, we may describe each linear input-output channel pair of the first layer of our weight units (which is an element
of L0(2, 1)) with B2+1+1 = 15 parameters, and each channel of the bias (which is an element of L0(0, 1)) with B1+1 = 2
parameters. For the later early layers, we need B1+1+1 = 5 parameters per input-output-channel pair for the linear part
(which is then an element of L0(1, 1)) , and B1+1 = 2 parameter per output channel bias (which is still an element of
L0(0, 1)) .

A.5. Proof of Theorem 3

We now prove the main result. Note that we have to assume that the activation function in the weight units is not a
polynomial (in order to be able to apply the classical universality result for neural networks [6].) The first step is to prove
that the NS(m)-architecture, i.e. the ones for the weight units is universal for functions restricted to a subset of RPm

0 .

Lemma 3. For ϵ > 0, define the set

Cm
ϵ = {Z ∈ RPm

0 | |z0| > ϵ} .

Then, NS(m) is dense in C(Cm
ϵ ).

Proof. We aim to apply the the Stone-Weierstrass theorem [35, Th.7.32]. This theorem says that if a set S of continuous
functions defined on a compact metric space M

• separates points, e.g. if there for each x ̸= y ∈M exists an f ∈ S with f(x) ̸= f(y),

• vanishes nowhere, e.g. that there for x ∈M exists a f ∈ S such that f(x) ̸= 0,

the algebra generated by S is dense in C(M). Note that we may use the real version of the theorem, since we are applying
real-linear layers.

In our setting, we want to apply the theorem with M equal to an arbitrary compact subset of Cm
ϵ , and S equal to the

functions v defined by the averaging the output of the last early layer of the networks in NS(m). For convenience, let us call
this set V(m). (See also Figure 7.) Due to the classical universality result of neural networks [6], the final fully connected
layers can namely generate the algebra of those functions.

That V(m) is nowhere vanishing is imminent, simply due to the fact that the linear layers have biases. Thus, we can
concentrate on proving that it separates points. So let Z ̸=W ∈ Cm

ϵ . We aim to show that if v(Z) = v(W ) for all functions
in V(m), Z must be equal to W as points in RPm

0 , i.e., up to a Stab(0)-permutation and global rotation. For convenience,
let us introduce the notations Z∧ = (0, z1, . . . , zm−1) and Z∨ = (z1, . . . , zm−1)

Claim 1: |z0| = |w0|. The map T 7→ e0T00 is a member of L0(2, 1). This can be seen through a direct calculation (see
also Section C.) Therefore, channels of the first layer of α can be chosen to output |z0|2e0. By choosing the subsequent
input-output-channel pairs as multiples of the identity, it can therefore be achieved that the output of the L:th layer can be
made equal to ψ(|z0|2)e0 for some neural network, which surely can be designed to be arbitrarily close to the identity (we
hereby again appeal to the classical universality result). This vector is of course summed to (something arbitrarily close to)
|z0|2. Hence, |z0|2 can be approximated arbitrarily well with functions in V(m), and consequently, |z0| = |w0|.



Claim 2: z0Z∨ = w0W∨ up to a permutation. Now we use that the maps T 7→ Te0 and T 7→ TT e0 are members
of L0(2, 1) (This can again be realized through a direct calculation, or a consultation of Section C). Since we apply such
functions on Z ⊗ Z in the very first layer of α, channels of its output can be chosen equal to output z0Z and z0Z. By
subtracting the map |z0|2e0 from above, we may even make them equal to z0Z∧ and z0Z∧. By taking linear combinations of
those two, we may hence make the very first layer equal

Yλ = re(z0Z∧) + λim(z0Z∧).

Now, by letting each input-output-channel of the subsequent layers be a multiple of the identity, we can see to it that the
output of the L:th layer is equal to ψ(Yλ), where ψ : C → C is any neural network applied pointwise. By the classical
universality result, we can in particular make it arbitrarily close to (Yλ)

k for any k ∈ N. These vectors are averaged to the so
called powersum polynomials in Yλ, i.e.

psk(Yλ) =
∑
i≥1

(Yλ)
k
i

These polynomials are, of course, exactly equal to the powersum polynomials in

Y ∨
λ = re(z0Z∨) + λim(z0Z∨).

Let us correspondingly write X∨
λ = re(w0W∨) + λim(w0W∨) Since the set of powersum polynomials generate the algebra

of symmetrical polynomials [9], which in turn are dense in C(Pm), we conclude (due to Urysohn’s separation lemma) that if
v(Z) = v(W ) for all v ∈ V(m), there must for every lambda be Y ∨

λ = X∨
λ as points in Pm−1, i.e. up to a permutation πλ

Y ∨
λ = π∗

λX
∨
λ . (6)

Now, simply because Sm is finite, there must exist a π0 and a sequence λn → 0 with πλn
= π0 for all 0. Inserting λ = λn

into equation (6) and letting λ→ ∞ we get, since π∗
0 is continuous, that

re(z0Z∨) = π∗
0re(w0W∨).

By subsequently inserting a small but non-zero λn into (6) and subtracting re(z0Z∨) = π∗
0re(w0W∨) from both sides, we

obtain

λnim(z0Z∨) = λnπ
∗
0 im(w0W∨) ⇒ im(z0Z∨) = π∗

0 im(w0W∨).

Hence, z0Z∨ = w0W∨ up to a permutation, as claimed.

Claim 3: Z = W . Since |z0| = |w0|, we must have z0 = θw0 for some θ ∈ S. By inserting this into Claim 2 and dividing
by w0 ̸= 0 (which is true due to W ∈ Cϵ), we get that θZ∨ equals W∨ up to a permutation. By conjugating that equality,
and using that θ−1 = θ, we get Z∨ = θW∨ up to a permutation. This together with z0 = θw0 however exactly means that
Z =W as points in RP0(m).

The claim now follows from Stone-Weierstrass.

The previous lemma shows that NS(m) is capable of approximating the function γ in Theorem 2 to arbitrary precision,
as long as cases where z0 is close to the origin is ignored. In order to handle also cases in which z0 is zero, we need to choose
the vector unit ψ in a certain manner. This is what the following, simple, lemma is for.

Lemma 4. Let ϵ > 0. There exists a function s ∈ NC which vanishes for |z| < ϵ, equals z for |z| > 2ϵ, and satisfies
|s(z)| ≤ |z| everywhere.



Proof. One easily realizes that

n(t) = 1
ϵ (ReLU(t− ϵ)− ReLU(t− 2ϵ))


0 if |z| < ϵ
t−ϵ
ϵ if ϵ ≤ t < 2ϵ

1 else.

m(t) = 1
2 (ReLU(t− ϵ) + ReLU(t− 2ϵ))


0 if |z| < ϵ
t−ϵ
2 if ϵ ≤ t < 2ϵ

t− 3
2ϵ else.

If follows that m(t)+ 3
2ϵn(t) equals zero for t < ϵ, equals t for t > 2ϵ, and is smaller than t for all t ≥ 0. Consequently,

s(z) =
(
m(z) + 3

2ϵn(z)
)

z
|z|

fulfills the requirements of the lemma and is, due to the definition of ρC, in NC.

We can now prove the universality of our architecture.

Proof of Theorem 3. Fix a compact, arbitrary set K ⊆ Pm, δ > 0, and f ∈ C(RPm) arbitrary. Our goal is to show that
there exists a Ψ ∈ NR(m) with supZ∈K |Ψ(Z)− f(Z)| ≤ δ. For future reference, set ω = supZ∈K supi∈[m] |zi|.

By Theorem 2, there exists a function of the form

g(Z) =
∑
i∈[m]

γ(τ∗i Z)zi (7)

with supZ∈K |f(Z)− g(Z)| < δ
2 and γ ∈ C(RPm

0 ). Write ω′ = supZ∈K supi∈τ∗
i
|γ(τ∗i Z)|, and define

ϵ = δ
4(5mω′+2m)

Lemma 3 proves that there exists an α ∈ NS(m) with

sup
Z∈Cm

ϵ ∩K
|α(Z)− γ(Z)| ≤ δ′ := min( δ

4mω , 1).

Concretely, this means that

|α(τ∗i Z)− γ(τ∗i Z)| ≤ δ′ if |zi| ≥ ϵ. (8)

Applying Lemma 4, we may further choose ψ equal to s as defined in that Lemma. Then, by definition,

Ψ(Z) =
∑
i∈[m]

α(τ∗i Z)s(zi) ∈ NR(m).

We now have

|Ψ(Z)− g(Z)| ≤
∑

i:|zi|<ϵ

|α(τ∗i Z)s(zi)− γ(τ∗i Z)zi|︸ ︷︷ ︸
(I)

+
∑

i:ϵ≤|zi|<2ϵ

|α(τ∗i Z)s(zi)− γ(τ∗i Z)zi|︸ ︷︷ ︸
(II)

+
∑

i:2ϵ≤|zi|

|α(τ∗i Z)s(zi)− γ(τ∗i Z)zi|︸ ︷︷ ︸
(III)

.

Let us discuss each of these terms these terms separately.
(I) For this terms, we have s(zi) = 0, and zi is small. Therefore,

(I) =
∑

i:|zi|<ϵ

|γ(τ∗i Z)zi| ≤ mω′ϵ.



(III) On this set, s(zi) = zi. Therefore

(III) =
∑

i:2ϵ≤|zi|

|α(τ∗i Z)− γ(τ∗i Z)||zi| ≤ mδ′ω,

due to (8).
(II) For these i, we have |s(zi) − zi| ≤ |s(zi)| + |zi| ≤ 4ϵ, and |s(zi)| ≤ |zi| ≤ 2ϵ. Again using (8), we consequently

obtain

(II) ≤
∑

i:ϵ≤|zi|<2ϵ

|α(τ∗i Z)− γ(τ∗i Z)||s(zi)|+ |γ(τ∗i Z)||s(zi)− zi| ≤ 2mδ′ϵ+ 4mω′ϵ ≤ m(2 + 4ω′)ϵ

Using the above three estimates, and our definition of δ′ and ϵ, we obtain

|Ψ(Z)− g(Z)| ≤ ϵ(5mω′ + 2m) + δ′mω

The proof is finished.

A.6. Proof of Proposition 4

Here, we prove that the networks in NR+(m) are rotation equivariant and permutation invariant, and that the set of them
includes the networks in NR(m).

Proof of Proposition 4. (i). It is clear that each α+ ∈ NS+(m) still is rotation invariant(this follows from the transition to
Z ⊗Z in the very first step) and that each ψ+ ∈ NC+(m) still is rotation equivariant (this follows from the fact that C-linear
maps and ρC both are). Since all of the linear layers are permutation equivariant, and all nonlinearities are applied pointwise,
it also obvious that they are both permutation equivariant. Because of this,

Ψ+(θπ∗Z) =
∑
i∈[m]

α+(θπ∗Z)i · ψ∗(θπ∗Z)i =
∑
i∈[m]

α+(Z)π−1(i) · θψ+(π∗Z)π−1(i) =
⌈
k = π−1(i)

⌉
= θ ·

∑
k∈[m]

α+(Z)k · ψ+(π∗Z)k = θ ·Ψ+(Z),

i.e. Ψ+ ∈ C(PR(m)).
(ii) First, by choosing all input-output-channel pairs in the linear layers of ψ+ as multiples of the identity, we can for any

ψ ∈ NC(m) achieve ψ+(Z)i = ψ(zi), i ∈ [m]. We may hence concentrate our efforts of proving that for any α ∈ NS(m),
it is possible to choose the Sm-invariant layers of an α+ ∈ NS+(m) such that α+(Z) = α(τ∗i Z)i, i ∈ [m]. We do this in
three steps.

Step 1: We claim that there for each first linear layer B0 of an α ∈ NS(m) exists a first linear layer B+
0 of an α+ ∈

NS+(m) with
B+

0 (T ) =
∑
i∈[m]

ei ⊗ τ∗i B0(τ
∗
i T ),

where B0 is a linear layer of an α-unit. It is enough to prove that this is true for each input-output-channel pair of the linear
layer. However, this is exactly the statement of Corollary (1).

Step 2: Now we claim that for each subsequent linear layer B0 of an α, there exists a corresponding linear layer B+
0 of an

α+ so that

B+
0 (

∑
i∈[m]

ei ⊗ vi) =
∑
i∈[m]

ei ⊗ τ∗i B0(τ
∗
i vi)

It is again enough to prove this for each input-output-channel pair. Each such inB0 is a map L0 ∈ L0(1, 1). Hence, it suffices
to show that the the map defined by

K(
∑
i∈[m]

ei ⊗ vi) =
∑
i∈[m]

ei ⊗ τ∗i L0(τ
∗
i vi)



Figure 8. Definition of the space V+(m).

is in L(2, 2). To this end, let π ∈ Sm be arbitrary. We have

K(π∗(
∑
i∈[m]

ei ⊗ vi))) = K(
∑
i∈[m]

eπ(i) ⊗ π∗vi)) = K(
∑
i∈[m]

ei ⊗ π∗vπ−1(i))) =
∑
i∈[m]

ei ⊗ τ∗i L0(τ
∗
i π

∗vπ−1(i)). (9)

We performed an index shift in the second step,. Now we utilize that τi ◦ π ◦ τπ−1(i) ∈ Stab(0) to see that

L0(τ
∗
i π

∗vπ−1(i)) = L0(τ
∗
i π

∗τ∗π−1(i)τ
∗
π−1(i)vπ−1(i)) = τ∗i π

∗τ∗π−1(i)L0(τ
∗
π−1(i)vπ−1(i)),

since L0 is Stab(0)-equivariant. Consequently, (9) is equal to∑
i∈[m]

ei ⊗ π∗τ∗π−1(i)L0(τ
∗
π−1(i)vπ−1(i)) =

∑
i∈[m]

eπ(i) ⊗ π∗τ∗i L0(τ
∗
i vi) = π∗(

∑
i∈[m]

ei ⊗ τ∗i L0(τ
∗
i vi)) = π∗K(

∑
i∈[m]

ei ⊗ vi).

We again performed index shifts. Thus, K is Sm-equivariant, which was to be proven.

Step 3: By inductively applying Step 1 and 2, we obtain that there for every function f corresponding to the early layers of
a network in NS(m), there exists a network in NS(m)+ whose first early layers have an output

f+(Z) =
∑
i∈[m]

ei ⊗ τ∗i (f(τ
∗
i Z)).

We now carry out the summation over one of the tensor dimensions of this to obtain∑
j∈[m]

f+(Z)ji =
∑
j∈[m]

[τ∗i (f(τ
∗
i Z))]j =

⌈
k = τi(j)

⌉
=

∑
k∈[m]

(f(τ∗i Z))k

Remember the definition of the space V(m) in the proof of Lemma 3. If we correspondingly define V+(m) as the set of
functions defined by summing the output of the early layers of members of NS+(m)-networks (see Figure 8), the above
shows there for every v ∈ V(m) exists a v+ ∈ V+(m) with

v+(Z)i = v(τ∗i Z), i ∈ [m].

By subsequently choosing all channels in the final layers as appropriate multiples of the identity, we can therefore achieve
that α+(Z)i = α(τ∗i Z) for all i, which was to be proven.

A.7. The two-cloud architecture

Here, we provide a discussion on the architectures for handling pairs of point clouds. Similarly as in the proof of the main
result, we first need to equip the space of clouds of point pairs with a metric structure.

Definition 10. For a subgroup of G ⊆ Sm, we let ∼G denote the equivalence relation

(Z,X) ∼ (W,Y ) ⇔ ∃π ∈ G : (Z,X) = (π∗W,π∗Y )



on Cm × Cm. We equip the set of such equivalence classes with the metric

dG((Z,X), (W,Y )) = inf
π∈G

(
||Z − π∗W ||2 + ||W − π∗Y ||2

)1/2

We denote the space that emerges for G = Sm with PPm, and for G = Stab(0) with PPm
0 .

On PPm and PPm
0 we define a further equivalence relation via

(Z,X) ∼ (W,Y ) ⇔ ∃ θ, ω ∈ S : Z = θW,X = ωY.

On the resulting spaces of equivalence classes, which we denote RPPm and RPPm
0 , we define a metric through

dS2((Z,X), (W,Y )) = inf
θ,ω∈S

d((Z,X), (θW,ωY )). (10)

Recall that R2(m) was the space of functions in C(PPm) which were rotation equivariant with respect to the first cloud,
and rotation invariant to the second, and the neural network architectures NR2(m) and NR+

2 (m) proposed in Section 4 of
the main paper.

The first result we wish to present for NR2(m) is a negative one. Its proof explicitly utilizes the basis for L2(2, 1)
provided in Section C. Hence, it might be wise to familiarize oneself with that basis before reading the proof.

Proposition 11. NR2(m) is not dense in R2(m) for any m ≥ 5.

Proof. First, let us notice that since we only modify the architectures for calculating the weight units compared to the one-
cloud case, the networks in NR2(m) all have the form

Ψ(Z,X) =
∑
i∈[m]

α(τ∗i Z, τ
∗
i X)ψ(zi).

with α Stab(0)-invariant and invariant to rotations of either cloud.
Let us call clouds X with

∑
i∈[m] xi = 0 and x0 = 0 centered. Consider the basis (Ki)i∈[15] of L0(2, 1) described in

Section C. All of their action on elements of the form X ⊗X (see in particular the final paragraph of the mentioned section)
are identically zero, except for

K1(X ⊗X) = e0
∑
i∈[m]

|xi|2,K5(X ⊗X) = 1
∑
i∈[m]

|xi|2 and K14(X ⊗X) = (|xi|2)i∈[m].

Consequently, when X is centered, the very first layer of the network, and therefore the entire value α(Z,X), can only
depend on the norms (|xi|)i∈[m] (and Z). Hence, if X, X̃ are centered clouds with |xi| = |x̃i| for all i, there must be

α(Z,X) = α(Z, X̃) (11)

To increase readability, let us refer to such pairs of centered clouds as norm-equal.
We now show that (11) leads to a contradiction. Consider functions of the form

f(Z,X) =
∑
i

sup
j ̸=i

inf
k ̸=j,i

a(|xj − xk|) · b(|zi|) zi., (12)

where a and b are monotone functions. That is, in words: for each i, we go over all of the points xj , j ̸= i, and calculate the
distance to nearest neighbor which is not equal to xi. We then insert those distances into a, choose the biggest of the resulting
values, and multiply it with b(|zi|) to obtain a weight for zi to use in a weighted average. It is not hard to realize that these
are in R2(m).

Let us be a bit more concrete and choose b to be equal to 0 on [0, 1/2] and equal to 1 on [1,∞[ and a in a similar fashion
be equal to 0 on [0, 1/4] and equal to 1 on [1/2,∞]. Now, let Z be a cloud with all points equal to 0 except for z0, which has
norm 1. We then have

f(Z,X) = sup
j ̸=0

inf
k ̸=j,0

a(|xj − xk|)z0.



Figure 9. The norm-equal pair of centered clouds X, X̃ used in the proof of Proposition 11.

Note that since both ρC for all θ > 0 and all linear layers map 0 to 0, we must have ψ(zi) = 0 for all i ̸= 0 and ψ ∈ NC.
Consequently, for all Ψ ∈ NR2(m) and Z as above, we have

Ψ(Z,X) = α(Z,X)ψ(z0). (13)

Now suppose that we can construct an norm-equal pair of balanced clouds X, X̃ with

(i) |xi| = |x̃i| ≤ 1
2 for all i

(ii) supj ̸=0 infk ̸=j,0 a(|xj − xk|) = 1, but supj ̸=0 infk ̸=j a(|x̃j − x̃k|) = 0,

then f(Z,X) = z0, but f(Z, X̃) = 0. Consquently, (11) would then imply that (13) cannot approximate (12) for both
(Z,X) and (Z, X̃). To see that this is possible, consider a cloud X with x0 = 0, x1,2 = 1/2, x3,4 = ±i/2 and, if needed, the
rest of the points arranged in a balanced fashion close to the origin. Then, X is balanced, and surely fulfills (i). We would
furthermore have

sup
j ̸=0

inf
k ̸=j,0

a(|xj − xk|) ≥ inf
k ̸=1,0

a(|x1 − xk|) = 1,

since all points in the cloud not equal to 1 are at a distance further than 1/4 from x1. Now define X̃ by letting all points
in X be fixed, but rotating x3 and x4 using the same rotation θ (see Fig. (9)). Then, (X, X̃) surely is a norm-equal pair.
However, we can rotate x3 and x4 in a fashion so that each point in X̃ has a nearest neighbor at a distance smaller than 1/4.
Consequently,

sup
j ̸=0

inf
k ̸=j,0

a(|x̃j − x̃k|) = 0.

This proves the proposition.

The last proposition shows that in order to prove a universality result, we need to restrict the set of functions we want to
approximate. The following theorem describes one such possible restriction: If we are only concerned with pairs (Z,X) for
which |zi| ≲ |xi|, i.e. cloud pairs for which points close to the origin in X correspond to points close to the origin in Z, we
again obtain universality

Theorem 12. For a > 0, define the set

Da = {(Z,X) ∈ PPm | a|z|i ≤ |x|i , i ∈ [m]} .

Then, both NR2(m) and NR+
2 (m) are dense in the space of C(Da)-functions which are rotation-equivariant with respect

to the first cloud.



Proof. The proof follows the beats of Theorem 3 very closely. We will therefore only provide a sketch, concentrating on the
parts of the argument which are significantly different.

One proves NR2(m) ⊆ NR+
2 (m) just as the corresponding result for single cloud networks. Hence, it is enough to

prove universality for NR2(m). To do that, on first generalizes Theorem 2 by proving that the set of functions

g(Z,X) =
∑
i∈[m]

γ(τ∗i Z, τ
∗
i X)zi,

where γ is arbitrary in the space of C(RPPm
0 ), is dense in R2(m) The proof is more or less verbatim equal to the proof

of the R(m)-result : One first proves that we can approximate the function using a polynomial in R2(m), similarly as in
Lemma 1. The proof then boils down to rewriting polynomials of the form∑

π∈Sm

Zπ∗α0Z
π∗β0

Zπ∗α1X
π∗β1

with |α0| = |β0| + 1 and |α1| = |β1|. It should be stressed that the last equalities are consequences of the ’separate
equivariance’ property.

Next, one moves on to generalizing Lemma 3. One proves that the space NS2(m) of two-cloud α-units is dense in
C(Ca,ϵ), where

Ca,ϵ = {(Z,X) ∈ Da | |z0| ≥ ϵ} .

Note that if (Z,X) ∈ Ca,ϵ, we also have |x0| ≥ a|z0| > 0.
The idea of the proof is again to apply the Stone-Weierstrass theorem, with the functions V2(m) that are given by outputs

of α-units after the invarization step as the function set S (see the proofs of Lemma 3 and Proposition 4, as well as Figures 7
and 8). To do this, let us first note that by letting the very first layer of α only depend on either cloud, and applying the same
steps as before, we get that if v(Z,X) = v(W,Y ) for all v ∈ V2(m), we must have |z0| = |w0| and |x0| = |y0|. Now notice
that for every λ > 0, we can also choose the output of the very first linear layer of α equal to

z0Z∧ + λx0X∧, z0Z∧ + λx0X∧,

using the same notation as in the previous proof. By subsequently following the same arguments as in the one-cloud proof,
we see that there must be

z0Z∨ + λx0X∨ = π∗
λ(w0W∨ + λy0Y∨) (14)

for some permutation πλ, possibly dependent on λ. By applying the same trick as we did to the real and imaginary parts of
z0Z∨ and w0W∨ to conclude that they were equal to each other up to a permutation, we conclude that there exists a common
π0 ∈ Sm with

z0Z∨ = π∗
0w0W∨, x0X∨ = π∗

0y0Y∨.

We may now proceed as before – notice that we can divide by both z0 and x0, since they are both unequal to 0.
Now, the final argumentation proceeds just as in the proof of Theorem 3.

B. Experiments

We implemented ZZ-net in PyTorch [32] using PyTorch Lightning [10]. For the essential matrix problem we performed
hyper parameter tuning using Ray Tune [26].

B.1. Estimating rotations between noisy point clouds

Here, we provide some additional information on experiments on the toy problem.



Data generation A cloud Z is formed of m = 100 points distributed on a random triangle. These are subsequently
rotated to a cloud X by a random rotation θ ∈ S, and low-level inlier noise is added to both clouds. We subsequently,
with a probability r, exchange each correspondence with an outlier (ẑi, x̂i) chosen completely at random. An example of
a resulting pair for r = 0.4 is shown in Figure 4. We generate 2000, 500 and 300 cloud pairs for training, validation and
testing, respectively. Step by step, the generation procedure is as follows:

• To generate the original cloud, without outliers, we first choose three points uniformly randomly on the unit disk - these
are the corners of the triangle.

• Next, we choose m = 100 new points uniformly randomly on the unit disk. For each of the points, we choose one of
the three sides of the triangle, and orthogonally project the point onto that side. This leaves us with an inlier cloud Zin.

• Next, a rotation θ ∈ S is chosen uniformly at random, and we define the other cloud asXin = θZin. We add independent
Gaussian noise to each of the points in either cloud, with a standard deviation of σ = 0.03.

• Then, we go through the point pairs, throwing each one out with a probability r. The ones that are thrown out are
replaced with a pair of points (zi, xi) independently chosen uniformly on the unit disk.

Comparison models Here we outline the two comparative methods for the experiments on rotation estimation. The first one
is a PointNet with 5 equivariant layers and a head with 5 fully connected layers, with additional learnable batch normalization
layers. The model as a whole has around 34K parameters. We also consider a model better adapted to handle outliers,
incorporating an attentive context normalization [36] with 7 layers, for a total of around 11K parameters. We refer to the
latter as ‘ACNe−’, since it lacks a lot of mechanisms (such as group normalization, skip connections, and other things)
compared to the actual ACNe model. To reiterate, we think it would be dishonest to claim that we in this experiment compare
our method with [36]. Our aim is rather to show that our approach can compete also with networks tailor-made for outlier-
heavy scenarios. Both of these models take in the correspondences as vectors in R4, used as the channels in the first layer,
and outputs two real scalars, which we reinterpret as a complex outputs. They are in particular not rotation equivariant.

The ’ACNe−’-model Let us discuss our implementation of an ’ACNe-architecture’ inspired by [36]. The ACNe−model
consists of so called ACNe-units. In each such, each point in the input is first fed through one linear layer and an activation
function to produce a cloud of features F ∈ (RC)m. These weights are then fed through two different linear layers to produce
two vectors v1, v2 ∈ Rm. A sigmoid is applied pointwise to v1 to produce the local weight vector w1. SoftMax is applied to
v2 to produce a global weight vector w2. These are then multiplied pointwise, and normalize to sum to one, to produce the
final weight vector w.

This vector is subsequently used to context normalize the feature cloud F . That is, each channel is normalized to have
zero mean and unit variance, with respect to the probability distribution defined by w. That is, with F̂ =

∑
j∈[m] wjFj , the

k:th channel of the output of the ACNe unit is equal to

Gk
i =

F k
i − F̂ k(∑

i∈[m] wi(F k
i − F̂ k)2

)1/2
.

The entire ’ACNe−’-net has two additional steps: First, the initial input is fed through one perceptron layer before being
fed to the first ACNe-unit. The actual output of the net is formed by the weighted average F̂ of the final ACNe unit. This is
different from [36], where the output of the final layer is processed further in a problem-dependent manner.

Model sizes For the broad model, the number of channel in the early layers are both equal to 4, the late layers have 4, 16,
4 and 1 channels, respectively. The vector unit layers have 32 and 1 channel, respectively.

For the deep model, each R2(m)-unit has 4 channels in the early layer. The late layers in the two earlier units have 4, 8
and 4 units each – the final unit instead as late layers with 4, 8 and 1 channels, respectively. The first two vector layers have
4 channels, whereas the last has 1.

The permutation equivariant layers of the PointNet have 32, 64, 128, 64, 64 and 64 layers. The layers of the fully
connected head have 64, 32, 16 and 2 channels. We use max-pooling in between the permutation-equivariant layers and the
fully connected head.

The layers of the ’ACNe−’ model have 4, 32, 32, 64, 64, 32, 32 and 2 layers, respectively.



Max. test rot. a = 0° 30° 60° 180°
ZZ-net (Ours) 0.15 0.15 0.16 0.15

ACNe 0.58 0.16 0.087 0.0096
CNe 0.30 0.077 0.058 0.0

OANet 0.30 0.14 0.038 0.0

Table 3. Essential matrix estimation. mAP at w = 10° error in
the estimated translation and rotation vectors for different values
of image plane rotations a at test time.

Max. test rot. a = 0° 30° 60° 180°
ZZ-net (Ours) 0.33 0.33 0.33 0.33

ACNe 0.72 0.32 0.20 0.054
CNe 0.50 0.21 0.15 0.022

OANet 0.50 0.30 0.12 0.026

Table 4. Essential matrix estimation. mAP at w = 30° error in
the estimated translation and rotation vectors for different values
of image plane rotations a at test time.

Nonlinearities We use the ReLU as a non-linearity for the PointNet, and leaky ReLUs (where the slope parameter is set to
the PyTorch standard of .01) for our models and the perceptrons in the ’ACNe−’-model.

In addition to the mechanisms described in the main paper, we choose, for the deep and broad model, to normalize each
channel of the weight unit, which is a vector in Cm, to have ℓ2-norm 1. We found this useful to prohibit the model to not get
stuck at outputs of very small magnitudes. The learnable θ-parameters in the complex ReLUs are initalized to 0.1.

Training details For the training of the PointNet, we use a stochastic gradient descent with a momentum of 0.9. The
learning rate is set to 10−3 and we train it for 400 epochs.

For the training of the ACNe model, we use Adam [21]. The learning is initially set to 10−3, and halved after 200 and 300
epochs. We train it for 400 epochs.

The broad and deep models are trained using Adam. We set the initial learning rate to 5 · 10−3, and half it after 70 and
150 epochs. We train it for 300 epochs.

All models are evaluated at the final epoch, with the exception of the experiment of the broad model for r = 0.8, which
severly overfitted the data (the final model had scores 0, 0 and .02 on the three metrics). Therefore, we (manually) stopped it
early after 120 epochs, when the validation loss still was low.

B.2. Essential Matrix Estimation

In this section we present more information on the experiment on essential matrix estimation from Section 5.2

Loss function Let {(ξ1, ξ2)} denote a set of virtual matches (generated as the authors of OANet do by using the OpenCV
correctMatches function), where ξ1 and ξ2 are in R2 and ξ̃1 and ξ̃2 are the homogeneous representations. Then the
symmetric squared epipolar loss of an estimated essential matrix E is

(ξ̃T2 Eξ̃1)
2

(Eξ̃1)2[0] + (Eξ̃1)2[1]
+

(ξ̃T2 Eξ̃1)
2

(ET ξ̃2)2[0] + (ET ξ̃2)2[1]
,

which we average over the set of virtual matches.

Evaluation metric The mAP score proposed by [51] is obtained by first, for equispaced angle values v = 5°, 10°, . . . , 30°,
calculating the proportion of estimated E-matrices that have an error in angle of both the translation vector and the rotation
axis vector below v. The obtained proportion can be called the precision at v. The mAP at an angle w is then obtained by
averaging the precision at all v ≤ w.

Further results We present mAP scores at 10° and 30° in Tables 3 and 4. Once again our results are averaged over two
runs. The maximum difference between the scores in these two runs for mAP at 10° was 0.03 and at 30° it was 0.02.

Model details The layer structures are as follows. The backbone B has three ZZ-units. The first has two early layers which
both have 8 output channels, two late layers which have 8 and 3 output channels, and two vector layers which have 8 and
3 output channels. The second ZZ-unit has two early layers again both with 8 output channels, two late layers with 8 and
3 output channels, and two vector layers with 8 and 3 output channels. The last ZZ-unit has one early layer with 8 output
channels, one late layer with 8 output channels and one vector layer with 8 output channels. We add skip connections so that
the input to each ZZ-unit is both the input to the previous unit as well as the previous unit’s output.



The equivariant angle predictor E consist of one ZZ-unit. It has one early layer with 8 output channels, one late layer with
1 output channel and two vector layers with 8 and 1 output output channels. The output of E is averaged over the point cloud
to predict one complex number, interpreted as one angle.

The invariant angle predictor I takes the outputted α+-weights of the backbone (which are rotation invariant) as input and
applies a PointNet/Deepset to it. Here the real and imaginary channels are treated like any other channel, i.e. the number
of input channels to I is twice the number of (complex) output channels of B. I consists of three layers, with 32, 64 and
4 output channels respectively. The output of I is averaged over the point cloud to get permutation invariance and the 4
outputted real numbers are then reinterpreted as 2 complex numbers or angles.

We add context normalization (CN) [51] between the early and late layers as well as after the vector layers in each ZZ-unit.
CN normalizes the features within a point cloud to mean 0 and variance 1.

Training details We implemented our model in Pytorch using Pytorch Lightning. We used Ray Tune to find reasonable
hyperparameters and then retrained the method with those.

We train the model for 30 epochs using early stopping on the validation loss. We use a learning rate of 0.01 and train using
Adam. We use a batch size of 1 due to the heavy memory need.

For all comparisons we use the settings supplied by the respective authors, except for the number of training iterations
which we change to 100000 to compare with our method (30 epochs corresponds to 30 · 3302 = 99060 iterations).

C. Spanning sets for spaces of Stab(0)-equivariant linear maps

Here we present explicit spanning sets for the spaces L0(k, ℓ) from Section C. They are obtained via applying the isomor-
phism given in 1 to the spanning sets of L(k, ℓ+ 1) described in [29].

L0(0, 0) This is simply the space scalars, i.e. K.

L0(1, 0) The space has dimension B2 ≤ 2. A basis is given by

µ0(v) = v0, µ1(v) = ⟨1, v⟩.

L0(0, 1) The space has dimension B2 ≤ 2. A basis is given by

w0 = e0, w1 = 1.

L0(2, 0) The space has dimension B3 ≤ 5. A basis is given by

λ0(T ) = ⟨1, T1⟩, λ1(T ) = ⟨1,diag(T )⟩, λ2(T ) = T00

λ3(T ) = ⟨e0, T1⟩, λ4(T ) = ⟨e0, TT 1⟩.

L0(1, 1) The space has dimension B3 ≤ 5. A basis is given by

L0(v) = ⟨1, v⟩1, L1(v) = v, L2(v) = v0e0

L3(v) = ⟨1, v⟩e0, L4(T ) = v01.

L0(0, 2) This space has dimension B3 ≤ 5. A basis is given by

T0 = 1 ⊗ 1, T1 = diag∗(1), T2 = e0 ⊗ e0

T3 = e0 ⊗ 1, T3 = 1 ⊗ e0

where diag∗ : Km → Km ⊗ Km is the dual operator of diag. Concretely, diag∗(v) is the tensor with diagonal v.



L0(2, 1) The space has dimensionB4 ≤ 15. If we let λi denote the basis of L0(2, 0) from above, the first 10 basis elements
are given by

Ki(T ) = λi(T )e0, K4+i(T ) = λi(T )1, i = 0, . . . , 4.

The final five are given by

K10(T ) = Te0, K11(T ) = TT e0, K12(T ) = T1

K13(T ) = TT 1, K14(T ) = diag(T )

L0(1, 2) The space has dimensionB4 ≤ 15. If we let Ti denote the basis of L0(0, 2) from above, the first 10 basis elements
are given by

Li(v) = v0Ti, L4+i(v) = ⟨1, v⟩Ti, i = 0, . . . , 4.

The final five are given by

L10(v) = e0 ⊗ v, L11(T ) = v ⊗ e0 L12(T ) = 1 ⊗ v

L13(T ) = v ⊗ 1, L14(T ) = diag∗(v)

L0(2, 2) The space has dimension B5 ≤ 52. If we let Ti denote the basis of L0(0, 2) and λi the one of L0(2, 0), from
above, the first 25 basis elements are given by

K5i+j(T ) = λj(T )Ti, i, j = 0, . . . , 4.

Letting Ki denote the basis of L0(2, 1) and Li the one of L0(1, 2), the next 25 are given by

K25+5i+j(T ) = L10+i(K10+j(T )), i, j = 0, . . . , 4

The final two are given by

K50(T ) = T,K51 = TT .

Applying L(2, 1)-maps to Z ⊗ Z. When describing the NS(m)-architecture, we argued that the very first layer of an
NS(m)-unit can be applied without calculating Z ⊗ Z. Let us show this. We have

λ0(Z ⊗ Z) =
∣∣ ∑
i∈[m]

zi
∣∣2, λ1(Z ⊗ Z) =

∑
i∈[m]

|zi|2, λ2(Z ⊗ Z) = |z0|2

λ3(Z ⊗ Z) = z0 ·
∑
i∈[m]

zi, λ4(Z ⊗ Z) = z0 ·
∑
i∈[m]

zi.

Clearly, all of these expressions can be calculated directly from Z ∈ Cm, which implies that the same is true for Ki,
i = 0, . . . , 9. As for the last five maps, we have

K10(Z ⊗ Z) = z0Z, K11(Z ⊗ Z) = z0Z, K12(Z ⊗ Z) =
∑
i∈[m]

zi · Z

K13(Z ⊗ Z) =
( ∑
i∈[m]

zi
)
· Z, K14(Z) = (|zi|2)i∈[m]

These expressions can clearly also be calculated without actually accessing Z ⊗ Z as a tensor.


