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A. Additional Method Details
A.1. Loss and Cost Functions

In this section we present the full definitions of the Dice
[8] and Focal [5] cost and loss functions used in Sections 3.5
and 3.6 of the paper.

Let mGT = {mt
GT}

TI
t=1 and mPred = {mt

Pred}
TI
t=1 be

ground-truth and prediction mask sequences respectively.
Also, denote by Np the number of pixels a mask has and by
pi ∈ R the ith pixel in a given mask.

A.1.1 Dice Cost and Loss

Given two segmentation masks mA,mB , the Dice coeffi-
cient [8] between the two masks is defined as follows:

DICE(mA,mB) =
2 ∗ |mA ∩mB |
|mA|+ |mB |

, (A.1)

where for a mask m, |m| =
∑Np

i=1 pi and |mA ∩ mB | =∑Np

i=1 p
A
i · pBi . Note that in practice we also add a smoothing

constant s = 1 to both the numerator and denominator of
the above expression to avoid possible division by 0.

Given the above, the Dice cost CDice between the mask
sequences mGT and mPred is defined as

CDice(mGT,mPred) = − 1
TI

∑TI
t=1 DICE(mt

GT,m
t
Pred). (A.2)

Similarly, the Dice loss LDice between the two sequences
is defined as

LDice(mGT,mPred) =
∑TI
t=1 1−DICE(mt

GT,m
t
Pred). (A.3)

A.1.2 Focal Loss

The Focal loss [5] between two corresponding segmentation
masks mt

GT and mt
Pred for time step t is defined as

FL(mt
GT,m

t
Pred) =

1
Np

∑Np

i=1−αTi (1− pTi )γ log
(
pTi
)
, (A.4)

where pTi is the probability predicted for the ground-truth
class of the ith pixel:

pT
i =

{
pPred
i pGT

i = 1

1− pPred
i otherwise,

(A.5)

and αTi ∈ [0, 1] is a class balancing factor defined as

αTi =

{
α pGT

i = 1

1− α otherwise.
(A.6)

Following [5, 11] we use α = 0.25, γ = 2. We refer to
[5] for more information about these hyperparameters.

Given the above, the Focal lossLFocal between the ground-
truth and predicted mask sequencesmGT andmPred is defined
as

LFocal(mGT,mPred) =

TI∑
t=1

FL(mt
GT,m

t
Pred). (A.7)

B. Additional Dataset Details
B.1. A2D-Sentences & JHMDB-Sentences

A2D-Sentences [2] contains 3,754 videos (3,017 train,
737 test) with 7 actors classes performing 8 action classes.
Additionally, the dataset contains 6,655 sentences describing
the actors in the videos and their actions. JHMDB-Sentences
[2] contains 928 videos along with 928 corresponding sen-
tences describing 21 different action classes.

B.2. Refer-YouTube-VOS

The original release of Refer-YouTube-VOS [9] contains
27,899 text expressions for 7,451 objects in 3,975 videos.
The objects belong to 94 common categories. The subset
with the first-frame expressions contains 10,897 expressions
for 3,412 videos in the train split and 1,993 expressions
for 507 videos in the validation split. The subset with the
full-video expressions contains 12,913 expressions for 3,471
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videos in the train split and 2,096 expressions for 507 videos
in the validation split. Following the introduction of the
RVOS competition1, only the more challenging full-video
expressions subset is publicly available now, so we use this
subset exclusively in our experiments. Additionally, this
subset’s original validation set was split into two separate
competition validation and test sets of 202 and 305 videos
respectively. Since ground-truth annotations are available
only for the training set and the test server is currently closed,
we report results exclusively on the competition validation
set by uploading our predictions to the competition’s server2.

C. Additional Implementation Details
C.1. Temporal Encoder Modifications

The original architecture of Video Swin Transformer [6]
contains a single temporal down-sampling layer, realized as
a 3D convolution with kernel and stride of size 2×4×4 (the
first dimension is temporal). However, since our multimodal
Transformer expects per-frame embeddings, we removed this
temporal down-sampling step by modifying the kernel and
stride of the above convolution to size 1× 4× 4. In order to
achieve this while maintaining support for the Kinetics-400
[3] pretrained weights of the original Swin configuration, we
summed the pretrained kernel weights of the aforementioned
convolution on its temporal dim, resulting in a new 1×4×4
kernel. This solution is equivalent to (but more efficient
than) duplicating each frame in the input sequence before
inserting it into the temporal encoder.

C.2. Multimodal Transformer

We employ the same Transformer architecture proposed
by Carion et al. [1]. The decoder layers are fed with a set of
Nq = 50 object queries per input frame. For efficiency rea-
sons we only utilize 3 layers in both the encoder and decoder,
but note that more layers may lead to additional performance
gains, as demonstrated by Carion et al. [1]. Also, similarly
to Carion et al. [1], fixed sine spatial positional encodings
are added to the features of each frame before inserting them
into the Transformer. No positional encodings are used for
the text embeddings, as in our experiments using sine em-
beddings have led to reduced performance and learnable
encodings had no effect compared to using no encodings at
all.

C.3. Instance Segmentation

The spatial decoder GSeg is an FPN-like [4] module con-
sisting of several 2D convolution, GroupNorm [12] and
ReLU layers. Nearest neighbor interpolation is used for
the upsampling steps. The segmentation kernels and the

1https://youtube-vos.org/dataset/rvos/
2https://competitions.codalab.org/competitions/

29139

feature maps of FSeg are of dimension Ds = 8 following
[10].

C.4. Additional Training Details

We use D = 256 as the feature dimension of the
multimodal Transformer’s inputs and outputs. The hyper-
parameters for the loss and matching cost functions are
λr = 2, λd = 5, λf = 2.

Following Carion et al. [1] we utilize AdamW [7] as the
optimizer with weight decay set to 10−4 during training. We
also apply gradient clipping with a maximal gradient norm
of 0.1. A learning rate of 10−4 is used for the Transformer
and 5 · 10−5 for the temporal encoder. The text encoder is
kept frozen.

Similarly to Carion et al. [1] we found that utilizing aux-
iliary decoding losses on the outputs of all layers in the
Transformer decoder expedites training and improves the
overall performance of the model.

During training, to enhance model’s position awareness,
we randomly flip the input frames horizontally and swap
direction-related words in the corresponding text expressions
accordingly (e.g., the word ’left’ is replaced with ’right’).

We train the model for 70 epochs on A2D-Sentences [2].
The learning rate is decreased by a factor of 2.5 after the
first 50 epochs. In the default configuration we use window
size w = 8 and batch size of 6 on 3 RTX 3090 24GB GPUs.
Training takes about 31 hours in this configuration. On
Refer-YouTube-VOS [9] the model is trained for 30 epochs,
and the learning rate is decreased by a factor of 2.5 after the
first 20 epochs. In the default configuration we use window
size w = 12 and batch size of 4 on 4 A6000 48GB GPUs.
Training takes about 45 hours in this configuration.

D. Additional Experiments
D.1. Ablations

Number of object queries. To study the effect of the num-
ber of object queries on MTTR’s performance, we train and
evaluate our model on A2D-Sentences using window size
w = 6 and different values of Nq . As shown in Tab. D.1, the
best performance is achieved for Nq = 50. Our hypothesis
is that when using lower values of Nq the resulting set of
object queries may not be diverse enough to cover a large
set of possible object detections. On the other hand, using
higher values of Nq may require a longer training schedule
to obtain good results, as the probability of each query being
matched with a ground-truth instance (and thus updated) at
each training iteration is lower.

D.2. Analysis of the Effect of TSVS

To further illustrate and analyze the effect of the temporal
segment voting scheme (TSVS), we refer to the zebras exam-
ple in the third row of Figure 3 (in the paper) and the orange
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Nq
IoU mAPOverall Mean

10 70.1 61.0 42.5
50 69.5 61.8 44.0
100 69.2 61.3 41.5
200 68.5 60.8 42.8
300 67.4 59.7 42.7

Table D.1. Ablation on number of object queries.

text query. Without TSVS, a prediction would have to be
made for each frame in the video separately. Hence, as the
correct zebra (marked in orange) is not yet visible in the first
two frames, one of the other visible zebras in each of these
frames may be wrongly selected. With TSVS, however, the
predictions of the correct zebra in the final three frames vote
together as part of a sequence, and due to the high reference
scores of these predictions, this sequence is then selected
over all other instance sequences. This results in only the
correct zebra being segmented throughout the video (i.e., no
zebra is segmented in the first two frames), as expected.
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