Holocurtains: Programming Light Curtains via Binary Holography

Supplementary Materials

1. Overview

The supplementary materials include this document, a
website, and code.

This document elaborates on Fourier-transform holog-
raphy, the wavefront propagation operator, the calibration
procedure, and our usage of existing assets. References to
the main paper are highlighted in blue. Video results of our
light curtains can also be viewed through our supplementary
website index.html.

2. A Short Introduction to Fourier-Transform
Holography

In our work, we leverage a concept known as Fourier-
transform holography. It is well known in the wave op-
tics literature that under coherent monochromatic illumina-
tion, an ideal lens forms the 2D Fourier transform of the
wavefront at its back focal plane [4]. More concretely, let
Ua(z,y) be the wavefront at the plane a distance d in front
of the lens. Then, the wavefront at the back focal plane will
be given by:
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where f is the focal length of the lens, Fj is the Fourier
transform of Uy, A is the wavelength of the illumination,
and k is the corresponding wave number k = QT” A camera
used to capture this image plane will then simply capture
the squared magnitude of a rescaled 2D Fourier Transform

of the original signal:
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A system based on Fourier-transform holography uses a
spatial light modulator (SLM) and a coherent light source
to form the wavefront Uy(x, y). The resulting Fourier trans-
form at the back focal plane of the lens is then utilized for
the desired application.
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I(s,t) = |U(s,t)\2 x 3)

In our work, we leverage this Fourier transform relation-
ship to redistribute light. To illustrate this concept, consider
the case where the desired pattern is just a single point:

I(s,t) = d(s,t) 4

The corresponding wavefront that would generate this pat-
tern would be given by:

Ua(z,y) =1 ®)

The entire wavefront at the plane d away from the lens will
be refocused to form the point. In other words, the system
is perfectly light efficient when forming this point.

For more general patterns, to maximize light efficiency,
the magnitude of the wavefront U; must also be maximized
for every point (z,y). In the case of a binary holographic
system like ours, this translates directly to the number of
pixels that are turned on to form a desired pattern. We find
that this number typically hovers around 50%, as shown
in Fig. 1.

In contrast, a phase SLM has fixed magnitude
|Ua(x,y)| = 1 and controllable phase, making such a sys-
tem 100% light efficient. However, as mentioned in the
main paper, such devices are often severely limited in frame
rate to about 60 Hz. In contrast, binary amplitude DMDs
can be controlled at rates up to 30 kHz, making them the
natural choice for fast structured light applications like light
curtains.

In practice, as shown in Fig. 2, our system only requires
50mW of light to generate a curve of similar brightness to
that of a Sony VPL HS51A LCD projector with a 135 W
bulb—which is 2700 brighter than our laser source. This
exemplifies how a binary holographic projector is much
more light efficient than a normal projector when creating
sparse patterns, making them especially suitable for appli-
cations like light curtains.

3. Generalized Propagation Operator

In Fourier-transform holography, we model wavefront
propagation between two parallel planes (i.e., the Fourier
and image planes) using a Fourier transform operator. An
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Figure 1. Examples of binary holograms generated through the modified Gerchberg-Saxton optimization procedure. Row 1: The target
patterns. Row 2: Simulated reconstructions. Scaled such that the white level is 25% of the maximum value, and the black level is 2.5%
of the maximum value. Row 3: The recovered binary patterns. Note that approximately 50% of the DMD pixels are turned on in the
recovered binary patterns, indicating that only half of the light is blocked by the DMD.
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Figure 2. Comparing the brightness of a curve generated by a LCD
projector with a 135 W bulb versus our system at 50 mW.

objective lens then relays the wavefront U (s, t) to another
parallel plane in the scene, scaling the projector pattern in
the process. Similar to a normal projector, we can manually
adjust the focus of the objective lens to form a sharp image
at a particular distance.

Alternatively, scalar diffraction theory, like Kirchhoff
diffraction, can also be used to propagate a wavefront from
the image plane to any point x € R in the scene:

Uscene (X) = Pdijfraction { U(S; t) } (X) (6)

For example, a generalized propagation operator could be
used in conjunction with the Gerchberg-Saxton algorithm
to generate a hologram at a different plane, without need-
ing to physically adjust the objective lens. In the case of
a light curtain, we could also optimize the hologram for a
2D manifold R in 3D space, e.g., the region of space im-
aged by a row of camera pixels. If R is planar, this can be
done using techniques based on rotating the angular spec-

trum [5, 10]. However, these propagation operators can be
computationally expensive, especially in the context of an
iterative Gerchberg-Saxton algorithm which requires evalu-
ating the propagation operator multiple times. We therefore
choose to use the simpler Fourier-based image formation
model, which works well in practice.

4. Light Curtain Calibration Procedures
4.1. Geometric Calibration

To compute the intrinsic and extrinsic parameters of the
projector-camera system, we use the projector-camera cali-
bration procedure proposed by Moreno et al. [6], with two
minor differences. First, in place of a checkerboard pattern,
we opt to use an inverted circleboard pattern (white circles
on a black background) printed onto a planar calibration tar-
get. Second, instead of a conventional projector, we rely on
our holographic projector to illuminate the calibration tar-
get with a sequence of Gray code patterns. Decoding the
corresponding Gray code images produces a dense set of
correspondences between camera and projector pixels.

To minimize the effect of speckle artifacts in the pro-
jection patterns, we compute 4 binary holograms of the
same Gray code pattern, using different initializations of
Gerchberg-Saxton. We then capture and average the cor-
responding images to obtain despeckled measurements.



4.2. Timing Calibration

The light curtain system requires accurate time synchro-
nization between the DMD and rolling-shutter camera. A
hardware trigger starts the camera’s exposure when the
DMD displays the first pattern of a sequence. We must then
determine an appropriate pixel clock for the camera, and
exposure time for the DMD patterns.

We first use an LED blinking at a known, fixed rate to
calibrate the inter-row delay of the rolling-shutter camera
for different pixel clock values. Then, we position the cam-
era in front of the DMD, and illuminate the DMD with a
bright point light source; the light reflects towards the cam-
era only if the DMD pixels are turned “on”. We calibrate the
DMD timings by displaying a sequence of patterns where
all the pixels are turned “off”, except for two patterns at
known indices where all the pixels are turned “on”. By ex-
amining where the bright rows occur in the rolling-shutter
capture, we can determine both the real pattern exposure
time of the DMD as well as the delay between the start
of the DMD pattern sequence and the start of the rolling-
shutter frame for some desired DMD pattern exposure time.

In practice, because the resolution of the inter-row delay
on the camera and the pattern exposure time on the DMD
are limited, not all values of pattern exposure times will
correspond to a pixel clock value that matches well (e.g.,
for some pixel clock value, a pattern cannot be exactly dis-
played at row 7, only » + 1 or 7 — 1 for two sequential
values of the pattern exposure time). Thus, we performed
an exhaustive search of different pixel clock values and dif-
ferent pattern exposure times to find the best matching pair,
which we found to be a pattern exposure time of 132 us and
a pixel clock of 40 MHz. We use these parameters for all of
the experiments shown in this work.

4.3. DMD Phase-Distortion Calibration
4.3.1 Technical Description

Sec. 4.3 described our phase-distortion calibration method
at a high level. Here, we describe our approach in more
mathematical detail.

Let m, n be the dimensions of the DMD, and ¢ < m and
r < n. Let P(z,y) be some function with non-zero values

only in range (—%,2) x (=%, %). Then, we can write a
shifted version of P(xz,y) as follows:
P(a,b)(x7y) :P(x_avy_b) (7N

where a and b represent a shift of the pattern such that the
q x r patch is centered over point (a,b). The 2D Fourier
transform of P, ) will be given by:

.F{P(%b)}(s,t) = _F{P}(57t)67i27r(as+bt) ®)

Consider the case where there are no distortions at the
DMD. Then, if we display P, ) at the DMD, by Eq. (3),

the pattern formed at the image plane will simply be a
rescaled 2D Fourier Transform of P:
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Note that the created pattern is invariant to the exact values
of a and b; shifts in the Fourier plane translate to phase mod-
ulation in the image plane, which is dropped in the intensity
calculation.

Now, consider the case where there is distortion D, p)
that can be approximated in a ¢ x r region around point
(a, b) as a linear phase ramp:

Doy (a,y) ~ e (tenEmateen@=b) )

where u(, ) and v(,p) are the slopes of the phase ramp.
Then, if pattern P, 3) is displayed, the corresponding wave-
front at the DMD will be given by F4)D(q,5)- By the
Fourier shift theorem, the resultant intensity captured by a
camera at the image plane will be shifted by the slope of the
phase ramp:

Tiap)(5,8) = Ligeal (5 — Wap)> T — V(ap)) (12)

This equation suggests a simple method to calibrate for
the phase distortions of the SLM. If Ijgeq can be found, then
to estimate the phase distortion around point (a, b), the re-
sulting projected image I, ; can be simply cross-correlated
with fjgey to determine the shift. The peak of this cross cor-
relation will give an estimate of the gradient of the phase
distortion (w(q,p), V(a,p))- These gradients can then be re-
combined using a Poisson solve to recover a map of the
phase distortion [9].

In practice, selecting ¢ and r requires care. A larger
patch may not be accurately represented by our simple lin-
ear phase ramp distortion model. At the same time, a
smaller ¢ and r yields both darker and lower frequency
intensity patterns, which may reduce the accuracy of the
cross-correlation matching process. In our case, we set ¢, r
to be one-tenth of the size of the DMD. In addition, be-
cause capturing an image for every possible (a, b) location
is infeasible, we sample a 19 x 19 grid on the DMD, and in-
terpolate the resulting gradient values to the full resolution.

4.3.2 Practical Considerations

This approach requires that a sensor images exactly the
Fourier Transform of the wavefront at the DMD. In prac-
tice, this may not be the case, as the sensor may image just
a subset of the resulting interference pattern, or the inter-
ference pattern may be rotated or warped. To account for



these issues, we first projected a series of Gray codes to
determine correspondences between pixels in the simulated
interference pattern and sensor pixels in the real interfer-
ence pattern. Using these correspondences, we calculated
a homography to warp the captured interference patterns to
match the simulated ones, after which we followed the pro-
cedure outlined in Sec. 4.3. Like in Sec. 4.1, we average
over multiple Gerchberg-Saxton instantiations to despeckle
the Gray code measurements.

5. Existing Assets and Code

The mesh used for the bunny model in Fig. 10 was
taken from the Stanford 3D Scanning Repository [11]. The
teapot [1] in Fig. 10 and the toy cow [2] in Fig. 1 are under
CCO licenses. The cat image from Fig. 1 is also under a CCO
license [7]. We created all other meshes used throughout the
paper. We use the Open3D [12] and trimesh [3] packages
for mesh processing. As described in the main paper, we
used the Pycrafter 6500 package [8] to interface with our
DLP LightCrafter 6500 EVM.

6. Code Submission

Our supplementary code includes the binary Gerchberg-
Saxton algorithm, and our calibration procedure for re-
covering the DMD phase pattern. You can try out a
simple example of binary Gerchberg-Saxton by running
/code/gs/test.py (our Python code requires NumPy and Mat-
plotlib). We also include MATLAB code and data for our
DMD phase calibration in /code/distort/. Although the re-
mainder of our code is specific to our hardware system, we
are happy to provide other components upon request.
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