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0. Summary of The Supplementary Material

Model details of the proposed CPL approach.
More experimental configurations and training details.
Full quantitative comparisons on RoboNet.

Robustness analyses to the training order on RoboNet.

M

Further qualitative results on RobotNet in both action-
free and action-conditioned setups.

6. Qualitative results for all previous tasks on KTH, which
show significant improvements over the prior art.

1. Model Architecture Details

Fig. | and Fig. 2 provide the detailed model architectures
of our Mixture World Model. Fig. 3 shows the details of
the generative model that generates the initial frames for
Predictive Experience Replay.
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Figure 1. Architecture details of the encoding module and the
representation module in our Mixture World Model.
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Figure 2. Architecture details of the dynamic module in the pro-
posed Mixture World Model. Modules in the red dashed box are
only used when actions are provided.

2. Experimental Configurations

We here provide the training details of CPL. In the pre-
dictive experience replay scheme, the number of rehearsal
video sequences from all previous tasks is about one-third
of that used in the current task. All models are trained using
the Adam optimizer with 5; = 0.9 and By = 0.999, and
the learning rate is set to 0.0005 for the KTH benchmark
and 0.0001 for RoboNet. Besides, the mini-batch size is set
to 32 for KTH and 16 for RoboNet. The input frames are
pre-resized to 64 x 64 for both benchmarks. We optimize
the entire model by 30,000 iterations for each task in the
continual learning process. We train all compared models
on a GTX 3090 GPU.
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Figure 3. Architecture of the generative model in the proposed
Predictive Experience Replay scheme, which learns to generate the
initial frames of previous tasks. Modules in the red dashed box are
only used when actions are provided.

3. Further Quantitative Results on RoboNet

Fig. 4 shows the full quantitative comparisons on particu-
lar tasks after individual training periods on the action-free
RoboNet benchmark. Fig. 5 shows the corresponding results
under the action-conditioned setup.
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Figure 4. Results on the action-free RoboNet benchmark.
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Figure 5. Results on the action-conditioned RoboNet benchmark.

4. Robustness of CPL to RoboNet Task Order

As shown in Table 1 and Table 2, we further conduct
experiments on RoboNet to analyze that whether CPL can
effectively alleviate catastrophic forgetting regardless of the
task order. Specifically, we train CPL with a task order of
Penn — Google — Berkeley — Stanford, which is differ-
ent from what has been used in Table 1 in the manuscript.
From the results, we find that the proposed techniques, i.e.,
(i) the mixture world model, (ii) the predictive experience
replay, and (iii) the non-parametric task inference, are still
effective despite the change of training order under both
action-conditioned and action-free setups.

5. Further Qualitative Results on RoboNet
5.1. Action-Free Video Prediction

Fig. 6 gives examples for predicted frames on RoboNet
under the action-free setup. We here follow the task or-
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[ Method [ PSNR SSIM (x107?) |
CPL-base [ 19.71 £0.01  68.37 £0.04
CPL-full | 22.07+0.04  77.08 +0.14

Table 1. Results on action-free RoboNet by models trained with a
different task order.

[Method | PSNR __ SSIM (x10°?) |
CPL-base | 19.07 £0.00  62.56 +£0.02
CPL-full | 23.22+0.02  71.32 +0.15

Table 2. Results on action-conditioned RoboNet by models trained
with a different task order.

der described in the above section, i.e., Penn — Google —
Berkeley — Stanford. The input sequence is randomly sam-
pled from the test set of the first environment (Penn). The
prediction results are made by models that have finished the
entire training procedure (i.e., after the last training period
on Stanford).

As we can see from this figure, all existing video predic-
tion models, including SVG, PredRNN, and PhyDNet, do not
have an accurate prediction of the motion of the robot arm.
Even the Joint-Training baseline (see the bottom line) tends
to produce rather static images across multiple time steps.
Compared with the models based on LwF and EWC, our
approach (CPL-full) makes less blurry predictions around
the robot arm in future frames.

In Fig. 7, we also provide results on the other two previous
tasks, i.e., Google and Berkeley. As above, the predicted
frames are generated by models that have finished the last
training period on Stanford.

5.2. Action-Conditioned Video Prediction

For the action-conditioned setup, besides the results
shown Fig. 4 in the manuscript, we here provide results
on other two tasks (i.e., Google and Penn) in Fig. 8. To be
consistent with the results in the manuscript, we still follow
the training order of Berkeley — Google — Penn — Stan-
ford, and use the final models after the last training period
on Stanford.

As we can see, our approach (CPL-full) shows sharper
and more accurate prediction results than the state-of-the-
art video prediction model (i.e., PhyDNet), as well as the
continual learning methods (i.e., LWF and EWC).

6. Further Qualitative Results on KTH

On the KTH benchmark, we set the the training order
as Boxing — Clapping — Waving — Walking — Jogging
— Running. In Fig. 6 in the manuscript, we have provided
the prediction showcases from the test set of the first task
(i.e., Boxing) by models trained on the last task (i.e., Run-
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Figure 6. Showcases of predicted frames on the action-free
RoboNet benchmark. The example is from the Pern environment,
which is the first task in the process of continual learning. We use
models that have finished the last training period on Stanford.

ning). Here, we show corresponding results on the other four
previous tasks in Fig. 9.

Our approach shows remarkable improvements over the
state-of-the-art video prediction model (i.e., PhyDNet), as

well as the continual learning methods (i.e., LWF and EWC).

Notably, none of the compared models can “remember” the
motion on previous tasks, especially for the Clapping and
Waving tasks that have long gone. While our CPL approach
is the only one that shows the ability to effectively mitigate
catastrophic forgetting and generate CORRECT motions
from corresponding observation frames.
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Figure 7. Action-free prediction results from (a) the Google environment and (b) the Berkeley environment, which are respectively the

second and the third task in continual learning setup on RoboNet. The task order at training time is Penn — Google — Berkeley — Stanford.

We use models that have finished the last training period on Stanford. For the first task of Penn, please refer to Fig. 6.
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Figure 8. Action-conditioned prediction results from (a) the Google environment and (b) the Penn environment, which are respectively the

second and the third task in continual learning setup on RoboNet. The task order at training time is Berkeley — Google — Penn — Stanford.

We use models that have finished the last training period on Stanford. For the first task of Berkeley, please refer to Fig. 4 in the manuscript.
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Figure 9. Video prediction results on the previous tasks before Running. We use models that have finished the last training period on Running.

(c) The 4th task: Walking

PredRNN
+ LwF
CPL-base
+ EWC

(d) The 5th task: Jogging

For the first task of Boxing, please refer to Fig. 6 in the manuscript. Note that our CPL approach is the only one that shows the ability to
effectively mitigate catastrophic forgetting and generate CORRECT motions from corresponding observation frames.
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