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Overview

In the supplementary material, we provide additional
contents that are not included in the main paper due to the
space limit:

¢ Proof of the Lemma 3.1 (see Section 1).

* Discussion about optimality of our two-stage search
strategy by taking a multi-line fitting with constraints
problem for example (see Section 2).

* Introduction of different methods to discretize the pa-
rameter space of the rotation axis (see Section 3).

* Additional comparisons between our TR-DE and state-
of-the-art methods on real-world datasets (see Sec-
tion 4).

* Additional experiments of the proposed method on the
purely rotational registration problem (see Section 5).
Experiments show that our method achieves better ef-
ficiency while keeping high accuracy and good robust-
ness, compared with state-of-the-art rotation estima-
tion approaches.

1. Proof of Lemma 3.1

The Lemma 3.1 is the basis of our transformation de-
composition. We present the proof of the Lemma 3.1 in our
paper as follows.

Proof. For any rotation angle § € [, 7] around a fixed ro-
tation axis r, the point Rx has a fixed relative angle v with
the axis r. Since the rotation operation does not change the
length, i.e. ||Rx|| = ||x||. Rx lies on a circle perpendic-
ular to the axis r, shown in Fig. 1. Thus, the projections
of r over Rx and x have same length L. Hence by the dot
product, we have

r' (Rx)=L-|Rx||=L-|x| =r"x
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Figure 1. Illustration of the geometrical relationship between Rx
and x, and the projection of the rotation axis on them.

2. Multi-line Fitting with Constraints

Ground-Truth No. Inliers: 13
Estimated No. Inliers: 13

Ground-Truth No. Inliers: 13
Estimated No. Inliers: 11

(a) Globally Optimal Case

(b) Sub-optimal Case
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Figure 2. Illustration of performing the two-stage search to ob-
tain the 2-DOF optimal orthogonal lines fitting most inliers from a
group of points corrupted by noise and outliers. (a) We first search
for k, i.e. the slope of the line pass through the origin. Then, by
fixing k, we search for d, i.e, the intercept of the second line. The
optimal k and d fit all true lines. (b) If there are pseudo inliers in
the first-stage search, we may discard some true inliers and contain
pseudo inliers by mistake. Then in the second-stage search, more
true inliers may be discarded. The two-stage search strategy may
fail to provide optimal results.

In our two-stage search strategy, we sequentially search
for the parts of the DOF. Ideally, in the first stage, we can
retain all true inliers and some pseudo inliers (both of them
are our candidate inliers). Then, in the second stage, all the
pseudo inliers can be pruned, and all the true inliers are still
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(a) Spherical Mapping

(b) Stereographic Projection
Figure 3. [lustration of the discretization of the hemisphere space.
(a) The spherical mapping: the red and blue faces have equal rel-
ative angles on the latitude axis, but have different areas. (b) The
stereographic projection: it projects a hemisphere to a disk in plane
z = 0 or z = 1 and preserves the local shape.

kept. However, in practice, this ideal performance cannot
be achieved in all cases. To facilitate understanding of the
optimality discussion, we take a multi-line fitting with con-
straints for example. Similar with our point cloud problem,
searching for parameters of the multi-line fitting problem
can be decomposed into two sequential search stages. The
details are shown as follows.

As shown in Fig. 2(a), there are two straight lines satisfy-
ing two constraints: the first one passes through the origin,
i.e. the equation is y = kx where k is the unknown slope;
the second line is orthogonal to the first one, i.e. the equa-
tion is y = k~'z + b where b is the unknown intercept.
These two lines have 2 DOF: the slope of the first line (k)
and the intercept of the second line (d). We aim to search
for k£ and d maximizing the number of points on these two
lines (up to an inlier threshold, represented as radii of the
solid circle in Fig. 2). In the case of Fig. 2(a), we can first
find k such that the first line pass through 5 points at most.
Then we fix k and search for d such that the second line can
fit 7 points. Thus, the number of estimated inliers is equal
to the ground-truth. However, in the case of Fig. 2(b), there
are 3 blue points very close to the optimal line, which will
make some trouble for our first-stage searching for k. The
first line can fit the maximum number of points only when it
passes through these three blue points and discards two true
inliers (the two deep green point close to the blue ones).
Due to the “greed” in the first stage, we can only search for
d such that the second line fits 4 points. As a result, the fi-
nal number of inliers is less than the ground-truth. But from
another perspective, this two-stage search strategy can find
a relatively good sub-optimal solution.

3. Discretization of Space of Rotation Axis

We model the parameter space of the rotation axis r by
a unit hemisphere. To facilitate our BnB-based search es-
timation of rotation axis, we need to discretize the hemi-
sphere. The longitude-latitude representation, namely the

Table 1. 2D coordinates for discretization of the hemisphere.

Projections 2D coordinates Shape
Spherical a€ |-, el0,7/2] Rectangle
Stereographic A€ 0,2],y € [—m, 7] Disk
Behrmann z € [—@, @}, y € |0, % Rectangle
Miller z € [-m,7],y € [0,2In(tan 35)] Rectangle
0.8
0.6
0.4
0.2
0.0

KITTI Augmented KITTI

Figure 4. Illustration of the distribution of the inlier ratios for all
point cloud pairs in KITTI and Augmented KITTI.

spherical mapping, is a commonly used method to dis-
cretize the sphere. As shown in Fig. 3(a), the equi-angular
discretization on the latitude axis leads to faces with dif-
ferent areas. The inconsistency may affect the convergence
of BnB-based search methods. Inspired by [9] and [12],
we introduce different projection methods to discretize the
hemisphere with 2D coordinates. As shown in Table 1, we
choose three representative projections with different prop-
erties': stereographic projection (conformal, see Fig. 3(b)),
Behrmann projection (equal-area), and Miller projection
(compromise). Note that, there is no suitable geometrical
construction of the Miller projection and Behrmann projec-
tion. Interested readers can refer to [12] for the detailed
mathematical formulations for these projection methods. In
Section 5.1, we compare their performance on the task of
the BnB-based searching for the rotation axis. We perform
branching operations on these 2D spaces (see Table. 1) and
back-project the sub-spaces onto the hemisphere for com-
puting bounds. By the experimental evaluation, the Miller
projection outperforms other methods in terms of efficiency,
while having comparable accuracy.

4. Additional Results

We first report the detailed scene-wise registration results
of our method on the 3DMatch dataset in Table 2. /P and IR
represent the inlier precision and recall respectively. Next,
we show additional results on the KITTI dataset.

As shown in Fig. 4, the average inlier ratio (ground-
truth) of the putative correpondences generated by FCGF
is 58.7%. With these “nearly saturated” correspondences as
input, almost all methods have satisfactory results. In or-
der to make a more complete comparison, we apply data
augmentation on the KITTTI dataset by adding random rota-

! Conformal indicates the projection preserves local shape, equal-area
implies that area is conserved everywhere, and compromise achieves the
balance between conformal and equal-area to reduce overall distortion.



Table 2. Scene-wise statistics for TR-DE on 3DMatch.
SR (%) RE(°) TE(cm) IP(%) IR(%) F1 (%)
Kitchen | 97.23 1.82 4.5 9198 97.22 94.12
Homel | 94.23 1.56 5.09 95.25  98.23 96.6
Home2 | 86.54 2.18 8.4 95.69  98.08 96.66
Hotell 96.9 1.68 5.94 94.57 97.9 96.04
Hotel2 87.5 1.69 6.38 96.82  98.34 96.99
Hotel3 | 94.44 1.47 4.43 97.77  98.71 98.22
Study 89.73 2.13 8.2 9485 9741 95.93
Lab 87.01 1.73 6.73 9272  95.64 93.69

Table 3. Registration results on the augmented KITTI dataset using
FCGEF features.

SR(%) RE(°) TE(cm) F1(%) Time (s)
FGR[17] 80 0.4 28.58 - 0.16
TEASER[15] | 84.68 033 2388 6946  2.27
RANSACIk[7] | 69.37 1.07 31.13 566 0.03
RANSAC10k 83.06 0.66 2693  69.06 022
PointDSC [1] 836 032 2267 7118 0.1
TR-DE (ours) | 8559 033  18.67 7529 1.25

tion and translation. We extract FCGF features from these
augmented point clouds. The average inlier ratio (ground-
truth) of the augmented KITTI is then reduced to 23.6%.
As shown in Table 3, our method achieves better perfor-
mance in terms of SR, TE and F'1. And our method is rela-
tively more efficient than the existing deterministic method
(TEASER).

S. Purely Rotational Registration

In this section, we consider the special cases of point
cloud registration with known translation or purely rota-
tional motion. Note that, the case of known translation can
be transfer to the case of purely rotational motion by trans-
forming the target point cloud with the translation before es-
timating rotation. The purely rotational registration is also
known as the Wahba problem [14] or rotation search prob-
lem [5, 4]. In addition to the point cloud registration [ 1 1, 3],
this type of problem finds extensive applications in image
stitching [2] and vanishing point estimation [&].

We extend our method to solve the problem by setting
all variables associated with the known translation as zeros.
Accordingly, the search spaces of stages I and II are reduced
from (2+1)-DOF and (1+2)-DOF spaces to 2-DOF rotation
axis and 1-DOF rotation angle respectively. We compare
our method with state-of-the-art approaches on the syn-
thetic and real-world datasets. Extensive experiments show
that our method achieves better efficiency while keeping
high accuracy and good robustness, compared with state-
of-the-art approaches.

The experiments are organized as follows. First, we
compare the performance of the rotation axis estimation
with different discretization methods in Section 5.1. Next,
we compare our method with the state-of-the-art algorithms
on real-world datasets in Section 5.2. Finally, we show the

application of our method in the image stitching problem
(see Section 5.3).

5.1. Evaluation on Synthetic Dataset

Data Generation. We synthesize a set of N points in the
cube [—0.5, 0.5]3 as the source point cloud. Moreover, we
add zero-mean Gaussian noise whose standard deviation is
denoted by o on each point. We produce the target point
cloud by moving the source point cloud with a random ro-
tation. Putative correspondences are determined by the in-
dex of the points. We denote outlier ratio by p. The outlier
correspondences are generated by randomly choosing p N
points from the target point cloud and adding random vec-
tors on these outlier points. In the following experiments,
we will assign different values of IV, o, and p for different
comparisons.

Evaluation Metric. To evaluating the performance of the
estimation of rotation axis r, we introduce the error metric:
rotation axis error e,. Mathematically, it is defined as

er = arccos (|res - Tge|) (1)

where (-)es and (-)g¢ represent estimated results and
ground-truth values respectively.
Comparisons of Discretization Methods. We compare
the influence of these discretization methods on the perfor-
mance of the BnB-based searching for rotation axis. Four
methods are aforementioned in Section 3, including the
spherical mapping (Sph), stereographic projection with pro-
jection plane at z = 1 (Stel), Behrmann projection (Beh),
and Miller projection (Mil). The other two methods are
introduced in [9], stereographic projection with projection
plane at z = 0 (Ste2) and exponential mapping (Exp).

The parameters of the synthetic datasets are: N = 500,
d = 0.005 and p = 50%. We generate the rotation axes
ry; by evenly sampling 16000 unit vectors on the hemi-
sphere. The rotation angle is fixed as 45° such that 16000
rotations and associated target point clouds are produced.
Figs. 7(a) and 7(b) respectively show the histogram statis-
tics of the convergence runtimes and rotation axis errors of
the searching for r with these discretization methods. The
Behrmann projection has the worst performance in our set-
tings, because it has more cases of runtime > 50 ms or
error > 0.9°. In contrast, the Miller projection achieves the
best performance in terms of efficiency while having com-
petitive accuracy.
Robustness of Rotation Axis Estimation. In this test, we
aim to evaluate the robustness to noise and outliers of the ro-
tation axis estimation with six discretization methods. The
number of points IV is set as 500. To evaluate the robust-
ness to noise, we set o ranging from 0.005 to 0.05 with fixed
p = 50%. On the other hand, the outlier ratio is set from
15% to 95% with fixed noise o = 0.005 for evaluating the
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Figure 5. Robustness comparisons with respect to the outlier ratio and Gaussian noise for evaluating the performance of the rotation axis

search methods based on different discretization.
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Figure 6. Robustness comparisons with respect to the outlier ratio. Each box-plot is the statistics of estimation on 500 independent trials.
Results show that our method outperforms other methods in terms of efficiency while keeping competitive accuracy and robustness.
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Figure 7. The histogram statistics of the convergence time and er-
ror for six discretization methods on the whole hemisphere.

robustness to outliers. Under each o or p, 500 independent
trials with random rotations are conducted.

Figs. 5(a) and 5(b) report the performance of the rotation
axis estimation on point-sets with increasing outlier ratios
and noises. From Fig. 5(a), the BnB-based search for rota-
tion axis with all six discretization methods is generally ro-
bust against outliers. Even for the cases with high outlier ra-
tios (95%), the algorithms can also converge to a relatively
good result in a very short time. The results of experiments
on varying noises are presented in Fig. 5(b). As expected,
regardless of the increasing noise level and outlier ratio, the
BnB-based search with the Mil discretization achieves the
most efficient performance among all the tests while having
competitive accuracy compared with other methods.

5.2. Evaluation on Real-world Dataset

Data Preparation. In this section, we compare the pro-
posed RO-DE with the state-of-the-art rotational registra-
tion techniques on real-world dataset. Following [15],
we use the Bunny model from the Stanford 3D Scanning
Repository [6]. We randomly choose N points from the
Bunny model. And they are centered, scaled in [—0.5,0.5]
to be source point cloud. The target point clouds are gen-
erated by randomly rotating the source point cloud. The

addition operations of Gaussian noise and outliers are per-
formed in the same way in Section 5.1.

Methods to Comparision. Based on the results of com-
parison in Section 5.1, we choose the Mil to discretize the
hemisphere and keep two types of rotation angle estimation.
Thus, the following algorithms will be compared:

* RANSAC: A classic method using the confidence level
of 0.99 as the stopping criterion;

* GORE [5]: A guaranteed method that estimates rota-
tion using simple geometric operations and exhaustive
sampling;

* GNC [13]: A deterministic method based on the grad-
uated non-convexity with truncated least squares costs;

* BnB [3]: A global optimal rotation search method us-
ing 7-ball as the rotation search space;

Evaluation Metric. Following [16], the error between the
estimated rotation matrix R, and the ground-truth R, is
defined as the geodesic distance

er = | arccos ((trace (R;Res) -1)/2) |
Results Analysis. In this part of experiments, one-to-
one correspondences are established using the indexes of
points. Figs. 6(a) and 6(b) report the statistics of the results
of all methods on the dataset with outlier ratios changing
from 15% to 95%. The error of the GNC estimator grows
rapidly, and it cannot handle the cases whose outlier ratios
are higher than 75%. Other methods show good robust-
ness to outliers. However, the runtime of BnB is always
the highest one, and there is a clear increase for the runtime
of RANSAC with the increasing outlier ratios. The proposed
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Figure 8. Results of image stitching by RO-DE on PASSTA
dataset. The outliers are shown in red.

method achieves the best performance in terms of efficiency
while keeping competitive accuracy.

5.3. Application: Image Stitching

In this section, we use the PASSTA datasets [10] to test
the proposed RO-DE on the application of image stitch-
ing. In order to merge a pair of images captured by a ro-
tating camera with known intrinsic K, SURF features are
extracted and associated as putative correspondences. In
our tests, the rotation R is estimated by registering the unit-
norm vectors back-projected from the homogeneous key-
point coordinates with K—1. Fig. 8 shows the stitching re-
sults on the PASSTA datasets, in which the images are as-
sumed to be acquired from a camera fixed on a tripod. The
inlier threshold is set as £ = 0.02. All tests terminate in
a very short time. Even for 339 pairs with the outlier ratio
83.2% in an example of the Lunch Room dataset, RO-DE
can converge in 6.44ms.
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