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Models #Channels #Blocks #Heads
MixFormer-B0 C = 24 [1, 2, 6, 6] [3, 6, 12, 24]

MixFormer-B1 C = 32 [1, 2, 6, 6] [2, 4, 8, 16]

MixFormer-B2 C = 32 [2, 2, 8, 8] [2, 4, 8, 16]

MixFormer-B3 C = 48 [2, 2, 8, 6] [3, 6, 12, 24]

MixFormer-B4 C = 64 [2, 2, 8, 8] [4, 8, 16, 32]

MixFormer-B5 C = 96 [1, 2, 8, 6] [6, 12, 24, 48]

MixFormer-B6 C = 96 [2, 4, 16, 12] [6, 12, 24, 48]

Table 1. Architecture Variants. Detailed configurations of archi-
tecture variants of MixFormer.

Abstract

In this supplementary file, we provide limitations of Mix-
Former, more model variants, experimental details, and dis-
cussions with related works.

A. Limitations
Our MixFormer is proposed to mitigate the issues in

local-window self-attention [15, 25]. Thus it may be lim-
ited to window-based vision transformers in this paper. Al-
though the parallel design and the bi-directional interactions
can be applied to the global self-attention [5, 24], it is not
clear that how many gains can the above designs bring. We
conduct a simple experiment on DeiT-Tiny [24]. But the
result becomes slightly worse, as shown in Table 4. More
efforts are needed to apply our mixing block to global at-
tention. We leave this for future work. Moreover, we build
the MixFormer series manually, limiting MixFormer in ex-
isting instances. Other methods such as NAS (Network Ar-
chitecture Search) [23] can be applied to further improve
the results.

B. More Variants of MixFormer
We scale our MixFormer to smaller and larger mod-

els. In this section, we provide two instantiated models
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(MixFormer-B0 and MixFormer-B5). Their detailed set-
tings are provided in Table 1, along with previous methods
(from B1 to B4). Note that MixFormer-B0 and MixFormer-
B5 are two examples. More variants can be obtained with
further attempts following the design of MixFormer. Then,
we validate their effectiveness on ImageNet-1K [4]. The
results are illustrated in Table 2.

On one side, MixFormer-B0 achieves competitive re-
sult (76.5% Top-1 accuracy on ImageNet-1K [4]) even with
0.4G FLOPs, which lies in the mobile level [18, 22]. While
other vision transformer variants [15, 26–29] did not pro-
vide a range of model sizes like our MixFormer, especially
in mobile level. We believe that further efforts can be made
to give higher performance to achieve state-of-the-art re-
sults [10, 23] in mobile level models. On the other side,
MixFormer-B5 shows an example to scale our MixFormer
to larger models. It has 6.8G FLOPs, while it can achieve on
par results with Swin-B (15.4G) [15], Focal-S (9.1G) [29],
Shuffle-S (8.9G) [12], and EfficientNet-B5 (9.9G) [23],
which demonstrates the computational efficiency of Mix-
Former. MixFormer-B6 achieves 83.8% top-1 accuracy on
ImageNet-1K [4]. It maintains the superior performance to
Swin-B(15.4G) [15] and is comparable to other models with
less flops.

The above results verify the scalability of MixFormer to
smaller and larger models. Moreover, it has the potential for
further improvements.

C. Additional Experiments

Window Sizes in Local-Window Self-Attention. We con-
duct ablation study on the window size in local-window
self-attention with MixFormer-B1. The experimental set-
tings are follow the ones in the ablation studies. The results
in Table 3 show that larger window size (ws=12) achieves
on par performance with ws=7 (78.4%) on ImageNet-
1K [4]. Based on the above result, We follow the con- ven-
tional design of Swin Transformer (ws=7) [15] in all vari-



Method #Params FLOPs Top-1

ConvNets

RegNetY-4G [21] 21M 4.0G 80.0
RegNetY-8G [21] 39M 8.0G 81.7

RegNetY-16G [21] 84M 16.0G 82.9
EffNet-B0 [23] 5M 0.4G 77.1
EffNet-B1 [23] 8M 0.7G 79.1
EffNet-B2 [23] 9M 1.0G 80.1
EffNet-B3 [23] 12M 1.8G 81.6
EffNet-B4 [23] 19M 4.2G 82.9
EffNet-B5 [23] 30M 9.9G 83.6

Vision Transformers
DeiT-T [24] 6M 1.3G 72.2
DeiT-S [24] 22M 4.6G 79.9
DeiT-B [24] 87M 17.5G 81.8
PVT-T [27] 13M 1.8G 75.1
PVT-S [27] 25M 3.8G 79.8
PVT-M [27] 44M 6.7G 81.2
PVT-L [27] 61M 9.8G 81.7
CvT-13 [28] 20M 4.5G 81.6
CvT-21 [28] 32M 7.1G 82.5
TwinsP-S [2] 24M 3.8G 81.2

DS-Net-S [19] 23M 3.5G 82.3
Swin-T [15] 29M 4.5G 81.3
Swin-S [15] 50M 8.7G 83.0
Swin-B [15] 88M 15.4G 83.5
Twins-S [2] 24M 2.9G 81.7
Twins-B [2] 56M 8.6G 83.2
LG-T [13] 33M 4.8G 82.1
LG-S [13] 61M 9.4G 83.3

Focal-T [29] 29M 4.9G 82.2
Focal-S [29] 51M 9.1G 83.5

Shuffle-T [12] 29M 4.6G 82.5
Shuffle-S [12] 50M 8.9G 83.5

MixFormer-B0 (Ours) 5M 0.4G 76.5
MixFormer-B1 (Ours) 8M 0.7G 78.9
MixFormer-B2 (Ours) 10M 0.9G 80.0
MixFormer-B3 (Ours) 17M 1.9G 81.7
MixFormer-B4 (Ours) 35M 3.6G 83.0
MixFormer-B5 (Ours) 62M 6.8G 83.5
MixFormer-B6 (Ours) 119M 12.7G 83.8

Table 2. Classification accuracy on the ImageNet validation
set. Performances are measured with a single 224 × 224 crop.
“Params” refers to the number of parameters. “FLOPs” is calcu-
lated under the input scale of 224× 224.

Window Sizes
ImageNet

Top-1 Top-5
7× 7 78.4 94.3

12× 1212× 1212× 12 78.4 94.5

Table 3. Window Sizes in Local-window Self-attention. We
investigate various window sizes for Local-window Self-attention
in MixFormer.

ants of MixFormer.

Apply Mixing Block to DeiT. Although our mixing block
is proposed to solve the window connection problem in
local-window self-attention [15]. It can also be applied to
global attentions [5,24]. We simply apply our mixing block

DeiT-Tiny [24]
ImageNet

Top-1 Top-5
Baseline 72.2 91.1

Baseline+Mixing Block 71.3 90.5

Table 4. Apply Mixing Block to DeiT-Tiny. We apply our mixing
block to global attention.
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Figure 1. Successive Design and Parallel Design. We combine
local-window self-attention with depth-wise convolution in two
different ways. Other details in the block, such as module design,
normalization layers, and shortcuts, are omitted for a neat presen-
tation.

to Deit-Tiny [24]. But the result is slightly lower than base-
line (71.3% vs. 72.2%) on ImageNet-1K [4]. We conjecture
that global attention (ViT-based model) may not share the
same problem and detailed design for global attention may
need further investigating. We leave this for future work.

D. Detailed Experimental Settings
Successive Design and Parallel Design. In Figure 1, we
give the details on how to combine local-window self-
attention and depth-wise convolution in the successive de-
sign and the parallel design. To make a fair comparison, we
adjust the channels in the blocks to keep the computational
complexity the same in the two designs.

Image Classification. We train all models for 300 epochs
with an image size of 224 × 224 on ImageNet-1K [4]. We
adjust the training settings gently when training models in
different sizes. The detailed setting is in Table 5.

Object Detection and Instance Segmentation. When
transferring MixFormer to object detection and instance
segmentation on MS COCO [14], we consider two typi-
cal frameworks: Mask R-CNN [9] and Cascade Mask R-
CNN [1, 9]. We adopt AdamW [17] optimizer with an ini-
tial learning rate of 0.0002 and a batch size of 16. To make



config value
optimizer AdamW [17]
base learning rate 8e-4 (B0-B3), 1e-3 (B4, B5, B6)
weight decay 0.04 (B0-B3), 0.05 (B4, B5, B6)
optimizer momentum β1, β2=0.9, 0.999
batch size 1024
learning rate schedule cosine decay [16]
minimum learning rate 1e-6
warmup epochs 20 (B0-B4), 40 (B5, B6)
warmup learning rate 1e-7
training epochs 300
augmentation RandAug(9, 0.5) [3]
color jitter 0.4
mixup [32] 0.2
cutmix [31] 1.0
random erasing [33] 0.25
drop path [11] [0.0, 0.05, 0.1, 0.2, 0.3, 0.5] (B0-B6)

Table 5. Image Classification Training Settings.

config value
optimizer AdamW
base learning rate 0.0002
weight decay 0.04 (B0-B3), 0.05 (B4, B5)
optimizer momentum β1, β2=0.9, 0.999
batch size 16
learning rate schedule steps:[8, 11] (1×), [27, 33] (3×)
warmup iterations (ratio) 500 (0.001)
training epochs 12 (1×), 36 (3×)
scales (800, 1333) (1×), Multi-scales [15] (3×)
drop path 0.0 (B0-B3), 0.1 (B4, B5)

Table 6. Object Detection and Instance Segmentation Training
Settings.

a fair comparison with other works, we make all normaliza-
tion layers trainable in MixFormer1. When training differ-
ent sizes of models, we adjust the training settings gently
according to their settings used in image classification. Ta-
ble 6 shows the detailed hyper-parameters used in training
models on MS COCO [14].

Semantic Segmentation. On ADE20K [34], we use the
AdamW optimizer [17] with an initial learning rate
0.00006, a weight decay 0.01, and a batch size of
16. We train all models for 160K on ADE20K. For
testing, we report the results with single-scale testing
and multi-scale testing on main comparisons, while we
only give single-scale testing results on ablation stud-
ies. In multi-scale testing, the resolutions used are the
[0.5, 0.75, 1.0, 1.25, 1.5, 1.75]× of that in training. The set-
tings mainly follow [15]. For the path drop rates in differ-
ent models, we adopt the same hyper-parameters as in MS
COCO [14].

Keypoint Detection. We conduct experiments on the MS
COCO human pose estimation benchmark. We train the
models for 210 epochs with an AdamW optimizer, an image
size of 256× 192, and a batch size of 256. The training and
evaluation hyper-parameters are mostly following the ones
in HRFormer [30].

Long-tail Instance Segmentation. We use the hyper-
parameters of Mask R-CNN [9] on MS COCO [14] when

1Wherever BN is applied, we use synchronous BN across all GPUs.

training models for long-tail instance segmentation on
LVIS [7]. We report the results with a 1× schedule. The
training augmentations and sampling methods are the same
for all models, which adopt a multi-scale training and use
balanced sampling by following [7].

E. Discussion with Related Works

In MixFormer, we consider two types of information ex-
changes: (1) across dimensions, (2) across windows.

For the first type, Conformer [20] also performs infor-
mation exchange between a transformer branch and a con-
volution branch. While its motivation is different from ours.
Conformer aims to couple local and global features across
convolution and transformer branches. MixFormer uses
channel and spatial interactions to address the weak mod-
eling ability issues caused by weight sharing on the channel
(local-window self-attention) and the spatial (depth-wise
convolution) dimensions [8].

For the second type, Twins (strided convolution +
global sub-sampled attention) [2] and Shuffle Transformer
(neighbor-window connection (NWC) + random spatial
shuffle) [12] construct local and global connections to
achieve information exchanges, MSG Transformer (channel
shuffle on extra MSG tokens) [6] applies global connection.
Our MixFormer achieves this goal by concatenating the par-
allel features: the non-overlapped window feature and the
local-connected feature (output of the dwconv3x3).
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