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1. SURE-based losses
We derive the SURE loss presented in the main paper

for the Gaussian, Poisson and Poisson-Gaussian noise mod-
els. We follow the derivation in [2]. In all cases, the goal
is to obtain an unbiased estimator of the supervised mean
squared error (MSE) of the clean measurement u from the
noisy measurement y:

N∑
i=1

1

m
∥ui − hθ(yi)∥2 (1)

with denoiser hθ : Rm 7→ Rm defined as

hθ = A ◦ fθ (2)

where A : Rn 7→ Rm denotes the forward operator and
fθ : Rm 7→ Rn is the (trainable) reconstruction network.
The expectation of (1) with respect to the pairs (y, u) can
be decomposed as

Ey,u{
N∑
i=1

1

m
∥ui − hθ(yi)∥2}

= Eu

N∑
i=1

1

m
Ey|u∥ui − hθ(yi)∥2.

(3)

The inner expectation can be further decomposed as

Ey|u∥ui − hθ(yi)∥2

= Ey|u{∥ui∥2 + ∥hθ(yi)∥2 − 2u⊤
i hθ(yi)}

= Ey|u{u⊤
i yi}+ Ey|u{∥hθ(yi)∥2} − 2Ey|u{u⊤

i hθ(yi)}

where we used that Ey|u{yi} = ui for all noise models. An
unbiased estimator of the second term is simply ∥hθ(yi)∥2,
which does not require clean measurements u. The terms

Ey|u{u⊤
i hθ(yi)} (4)
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and
Ey|u{u⊤

i yi} (5)

depend on u and require a noise-dependent analysis, which
is presented in the following subsections.

1.1. Gaussian

We begin with the Gaussian noise model. In this case, we
have y ∼ N (u, σ2I) where I is an m ×m identity matrix.
The terms (4) and (5) can be computed in an unsupervised
way (without clean u) using the following lemma:

Lemma 1 (Lemma 2 in [5]) Let y ∈ Rm such that
y ∼ N (u, σ2I) be a random variable and let ϕ :
Rm 7→ Rm be a weakly differentiable function such that
Ey|u{|δϕj(y)/δyj |} < ∞ for all j and input y. Then,

Ey|u{u⊤ϕ(y)} = Ey|u{y⊤ϕ(y)− σ2∇ · ϕ(y)} (6)

where ∇ · ϕ(y) =
∑

j
δϕj(y)
δyj

denotes the divergence of ϕ.

Applying Lemma 1 to (4) with ϕ = hθ and to (5) with
ϕ = identity, we get the following unbiased estimator of the
MSE:

N∑
i=1

1

m
{∥yi∥2 − σ2m+ ∥hθ(yi)∥2 − 2y⊤hθ(y)+

+ 2σ2∇ · hθ(yi)}

=

N∑
i=1

1

m
∥yi − h(yi)∥2 − σ2 +

2σ2

m
1⊤δhθ(yi)

where δhθ(y) = [ δhθ(y)
δy1

, . . . , δhθ(y)
δym

]⊤ is the gradient of hθ

with respect to y.
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Using a Monte Carlo approximation of the last term (c.f.,
Theorem 2 of the main paper), and decomposing hθ = A ◦
fθ, we obtain the unsupervised loss used in the main paper:

LSURE(θ) =

N∑
i=1

1

m
∥yi −A(fθ(yi))∥22 − σ2

+
2σ2

mτ
b⊤i (A(fθ(yi + τbi))−A(fθ(yi)))

(7)

where bi ∼ N (0, I) and τ is a small positive number.

1.2. Poisson

In the Poisson noise case, the noisy measurements are
modeled as y = γz with z ∼ Poisson(uγ ). The following
lemma provides unsupervised expressions for (4) and (5).

Lemma 2 (Lemma 1.2 in [2]) Let z ∈ Rm such that z ∼
Poisson(u) be a random variable and let ϕ : Rm 7→ Rm be
a function such that Ez|u{|ϕj(z)|} < ∞ for all j.

Ez|u{u⊤ϕ(z)} = Ez|u{z⊤ϕ[−1](z)} (8)

where the jth entry of the vector ϕ[−α](z) is given by ϕj(y−
αej) and ej is the jth canonical vector.

Let ϕ(z) = hθ(y) = hθ(γz), then term (4) is given by

Ey|u{u⊤
i hθ(yi)} = γEz|u{(

ui

γ
)⊤ϕ(zi)} (9)

= γEz|u{z⊤i ϕ[−1](zi)} (10)

= Ey|u{y⊤i h
[−γ]
θ (yi)} (11)

and an unbiased estimator is simply

y⊤i h
[−γ]
θ (yi) (12)

Now let ϕ(z) = y = γz be the identity function, term (5) is
given by

Ey|u{u⊤
i yi} = Ey|u{y⊤i (yi − 1γ)} (13)

where 1 denotes a vector of m ones. An unbiased estimator
is given by

y⊤i (yi − 1γ). (14)

Thus, an unbiased estimator of the MSE is given by

N∑
i=1

1

m
{∥yi∥2 − γ1⊤yi + ∥hθ(yi)∥2 − 2y⊤i h

[−γ]
θ (yi)}

≈
N∑
i=1

1

m
{∥yi∥2 − γ1⊤yi + ∥hθ(yi)∥2 + 2γy⊤i δhθ(yi)}

=

N∑
i=1

1

m
∥yi − hθ(yi)∥2 −

γ

m
1⊤yi +

2γ

m
y⊤i δhθ(yi)

where we used a Taylor expansion to approximate
h
[−γ]
θ (y) ≈ hθ(y) − γδhθ(y) [2]. Using a Monte Carlo

estimate of the last term [2] (similar to Theorem 2 in the
main paper) and decomposing hθ = A ◦ fθ, we get the un-
supervised loss of the main paper

LSURE(θ) =

N∑
i=1

1

m
∥yi −A(fθ(yi))∥22 −

γ

m
1⊤yi

+
2γ

mτ
(bi ⊙ yi)

⊤ (A(fθ(yi + τbi))−A(fθ(yi)))

(15)

where b is an i.i.d. random vector following a Bernoulli
distribution.

1.3. Poisson-Gaussian

Noisy measurements under a Poisson-Gaussian noise
model are defined by

y = γz + ϵ with


u = A(x)

z ∼ Poisson
(

u
γ

)
ϵ ∼ N (0, σ2I)

(16)

where γ > 0 controls the Poisson noise contribution and
σ > 0 controls the Gaussian noise contribution. An un-
supervised equivalent of (4) and (5) can be obtained using
Lemmas 1 and 2. Let ϕϵ(z) = hθ(y) = hθ(γz + ϵ), then
(4) is given by

Ey|u{u⊤
i hθ(yi)} = γEϵ|uEz|u{(

ui

γ
)⊤ϕϵ(zi)} (17)

= γEy|u{z⊤i ϕ[−1]
ϵ (zi)} (18)

= γEy|u{
yi − ϵ

γ

⊤
h
[−γ]
θ (yi)} (19)

= Ey|u{y⊤i h
[−γ]
θ (yi)} − Ey|u{ϵ⊤i h

[−γ]
θ (yi)} (20)

= Ey|u{y⊤i h
[−γ]
θ (yi)− σ2∇ · h[−γ]

θ (yi)} (21)

where we used Lemma 2 in (18) and Lemma 1 in (21).
Thus,

y⊤i h
[−γ]
θ (yi)− σ2∇ · h[−γ]

θ (yi) (22)

is an unbiased estimator of (4). Similarly, setting ϕϵ(z) =
y = γz + ϵ, (5) is equal to

Ey|u{u⊤
i yi} = Ey|u{y⊤i (yi − 1γ)− σ2m} (23)

and

y⊤i (yi − 1γ)− σ2m (24)

is an unbiased estimator of (5). Thus, an unbiased estimator
of the MSE is given by

N∑
i=1

1

m
{∥yi∥2 − γ1⊤yi − σ2m+ ∥hθ(yi)∥2−

− 2y⊤i h
[−γ]
θ (yi) + 2σ2∇ · h[−γ]

θ (yi)}
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≈
N∑
i=1

1

m
∥yi − hθ(yi)∥2 −

γ

m
1⊤yi − σ2+

+
2

m
(γy⊤i + σ21⊤)δhθ(y)−

2σ2γ

m
1⊤δ2hθ(y)

where δ2hθ(y) = [ δ
2hθ(y)
δy2

1
, . . . , δ2hθ(y)

δy2
m

]⊤ is a vector of sec-
ond derivatives of hθ with respect to y. Using a Monte Carlo
approximation of the last two terms [2] (similar to Theorem
2 in the main paper) and decomposing hθ = A ◦ fθ, we
obtain the unsupervised loss in the main paper:

LSURE(θ) =

N∑
i=1

1

m
∥yi −A(fθ(yi))∥22 −

γ

m
1⊤yi − σ2

+
2

mτ
(bi ⊙ (γyi + σ2I))⊤ (A(fθ(yi + τbi))−A(fθ(yi)))

+
2γσ2

mτ
c⊤i (A(fθ(yi + τci)) +A(fθ(yi − τci)) . . .

− 2A(fθ(yi)))

(25)

where bi ∼ N (0, I), ci are i.i.d. random variables that fol-
low a Bernoulli distribution.

2. Training Details
We first provide the details of the network architectures

and hyperparameters used in simulations for Figures 1, 4-7
and Tables 1-3 of the main paper. We implemented the algo-
rithms and operators (e.g., radon and iradon) in Python
with PyTorch 1.6 and trained the models on NVIDIA 1080ti
and 2080ti GPUs. We used the network architecture in [1]
for defining Gθ. Figure 1 illustrates the architecture of the
residual U-Net [4] used in our paper. The training details
for each task are as follows:

Accelerated MRI. For the 4× accelerated MRI task, we
used Adam with a batch size of 2 and an initial learning rate
of 5 × 10−4. The weight decay is 10−8. We trained the
networks for 500 epochs, keeping the learning rate constant
for the first 300 epochs and then shrinking it by a factor of
0.1. We set α = 1 and τ = 0.01.

Inpainting. For the inpainting task, we also used Adam
but with a batch size of 1 and an initial learning rate of 10−4.
The weight decay is 10−8. We trained the networks for 500
epochs, shrinking the learning rate by a factor of 0.1 every
100 epochs. We set α = 1 and τ = 0.01.

Sparse-view CT. For the 50-views CT task, we used the
Adam optimizer with a batch size of 2 and an initial learning
rate of 5× 10−4. The weight decay is 10−8. We trained the
networks for 3000 epochs, shrinking the learning rate by a

3x3 Conv + BN + ReLu

Copy

2x2 Max Pooling

3x3 Up-Conv + BN + ReLu
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Figure 1. The residual U-Net [4] used in the paper. The number of
input and output channels is denoted as C, with C = 1, 2, 3 in the
CT, MRI and inpainting task, respectively.
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Figure 2. Reconstruction performance (PSNR) as a function of
noise level σ for different training losses on the MRI image recon-
struction task with 4× compression and noisy k-space measure-
ments.

factor of 0.1 every 1000 epochs. In particular, because the
CT model is nonlinear and involves an exponential mapping
such that the consistency loss for y is very large, we scale
the LSURE (in Equation (14) of main paper) accordingly by
a factor of 10−5. We set α = 1000 and τ = 10.

3. More results
3.1. Ablation study on training loss

We first compared different variants of loss function for
training the REI models. In particular, we consider the fol-
lowing 9 training loss variants:

• MC: LMC(θ)

• SURE: LSURE(θ)
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Figure 3. Low-dose CT image reconstruction (50 views) on the test observations with mixed Poisson-Gaussian noise, I0 = 104, σ = 50,
γ = 1. PSNR values are shown in the top right corner of the images.

• EI: LMC(θ) + αLEQ(θ)

• EI1: LMC(θ) + αLREQ(θ)

• EI2: LSURE(θ) + αLEQ(θ)

• EIoracle:
∑N

i=1
1
m∥ui −Afθ(yi)∥2 + αLEQ(θ)

• REIoracle:
∑N

i=1
1
m∥ui −Afθ(yi)∥2 + αLREQ(θ)

• REI: LSURE(θ) + αLREQ(θ)

• Sup:
∑N

i=1
1
n∥xi − fθ(yi)∥2

Figure 2 shows the reconstruction performance (PSNR)
as a function of noise level σ for different variants of train-
ing loss on the 4× accelerated MRI image reconstruction
task. Recall the oracle losses include additional oracle ac-
cess to the clean measurements ui. This provides us with a
way to study the contributions of the equivariant and SURE
losses.

From the figure we can observe that: (i) MC fails to
learn anything except to converge to the linear reconstruc-
tion A†y, while SURE achieves a stable estimation to the
clean measurement consistency. (ii) REI outperforms EI1
and EI2 which demonstrates the effectiveness of the pro-
posed training loss (Equation (14) in the main paper). (iii)

REI performs better than EIoracle demonstrating the bene-
fits of using a noisy input in our proposed robust Equiv-
ariance loss. (iv) Both Sup and REIoracle outperform REI
due to having access to the ground truth clean images and
measurements, respectively. However, as noted in the main
paper the REI performance lies close to that for REIoracle,
suggesting that the SURE loss is doing a reasonable job of
estimating the (oracle) clean measurement consistency loss.

3.2. Effect of the equivariance hyperparameter α

We consider the optimal value and sensitivity of the hy-
perparameter α on the inpainting task. Table 1 shows the
REI reconstruction performance for different equivariance
strength values (α in Equation (14) of the main paper) and
different Poisson noise levels γ. We see that an optimal
value here is around α = 1, although the performance is
generally good over the range 0.1 ≤ α ≤ 1 indicating that
REI is not sensitive to the precise value of α. However,
when α is either too small or too large we do observe dete-
rioration in performance. Consistent observations were also
found in the MRI task. Therefore, we set α = 1 for inpaint-
ing and MRI tasks.

In the nonlinear CT task, since the measurement values
are substantially larger than those in the MRI and inpainting
experiments we scaled the SURE loss by 10−5 and set α =
1000. We leave further optimization of α in this task for
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future research.

γ α = 0.01 α = 0.1 α = 1 α = 10 α = 100

0.01 19.5 ± 1.1 19.66 ± 1.7 21.0 ± 1.3 16.2 ± 1.6 10.6 ± 1.4

0.05 17.0 ± 1.0 18.1 ± 1.0 18.2 ± 1.2 13.5 ± 1.7 7.4 ± 2.0

0.1 11.2 ± 1.1 16.0 ± 1.0 16.6 ± 1.3 12.3 ± 1.5 8.0 ± 1.6

Table 1. Effect of the equivariance strength α on the reconstruction
performance (PSNR) in the inpainting reconstruction (Urban 100
dataset) task with different noise level γ.

3.3. Effect of the small positive number τ

We follow the suggestion of [3] and select the value of
τ to be around max(y)/1000. Table 2 presents REI recon-
struction performance (PSNR) on the MRI task with differ-
ent magnitudes of τ where the Gaussian noise level is fixed
as σ = 0.1. It shows that REI works best when τ = 10−2.
In the MRI and inpainting experiments, we set τ = 10−2

and set τ = 10 to the CT task to account for the larger val-
ues of y.

σ τ = 10−1 τ = 10−2 τ = 10−3 τ = 10−4

0.1 24.6 ± 2.2 27.7 ± 2.0 26.9 ± 2.3 25.3 ± 2.4

Table 2. Sensitivity of the small positive number τ on the re-
construction performance (PSNR) in the 4× accelerated MRI
(fastMRI dataset) task with a fixed noise level σ = 0.1.

FBP EI REI REIoracle Sup

CT 12.9 ± 1.1 21.6 ± 0.7 30.5 ± 1.0 30.5 ± 1.1 30.7 ± 1.0

Table 3. Reconstruction performance (PSNR) of low-dose 50-
views CT (CT100 dataset) task for different methods on the test
noisy measurements. I0 = 104 and σ = 50.

3.4. Low-dose Sparse-view MPG CT

We have shown in the main paper an initial demonstra-
tion that REI can learn a competitive CT reconstruction with
MPG noisy measurements in the nonlinear CT task. Here
we are interested in further testing whether REI can handle
the more challenging low-dose (i.e., higher Poisson noise)
case. To do that, we set I0 = 104 and σ = 50, Table 3
and Figure 3 show some preliminary results. We have the
following observations: (i) both FBP and EI fail to learn the
reconstruction due to the high MPG noise in the measure-
ments. (ii) In some examples (e.g., the first row in Figure 3),
REI enjoy a slightly higher PSNR than that of Sup, but vi-
sually the reconstruction result of Sup is sharper. This may

indicate that the Sup network is overfitting and that REI en-
joys better generalization on the test measurements due to
the equivariance constraint, c.f EI in [1]. (iii) As shown in
Table 3, REI achieved comparable performance (PSNR) to
both Sup and REIoracle. Moreover, our model outperforms
FBP by more than 17 dB and enjoys a 9 dB gain against
EI. Both these results and those in our main paper here sug-
gest that robust equivariant imaging is a powerful learning
paradigm. We plan to explore the nonlinear CT further in
future research, e.g., a wider range of noise levels, hyperpa-
rameter optimisation, etc.
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