
A. Preprocessing and Dynamics
A.1. Pre-encoding of Nodes and Edges

Since all datasets we use provide global coordinates and
headings of the nodes, we first transform the global coor-
dinates of the state history and state future to local frames
fixed at the nodes’ current position. For vehicles with head-
ing angle , we use cos() and sin() as features instead
of to prevent the ±2⇡ issue. For every type of nodes,
the raw features are passed through a fully connected layer
as pre-encoding, and the network is shared in all modules
that require state information, i.e., whenever we use state in-
formation, the state vector passes through the pre-encoding
layer first.

For edges, we construct a pre-encoding layer for ev-
ery edge type (e.g., vehicle-vehicle, vehicle-pedestrian,
pedestrian-vehicle, and pedestrian-pedestrian). The pre-
encoding layer extracts raw features from the states of the
two agents then passes them through a fully connected
layer. The raw features contain agents’ relative position and
relative velocity in the local frame as well as their sizes.

A.2. Dynamic Models and Collision Checking
We use a Dubin’s car model for vehicles in the scene

with

s =

2

64

X

Y

v

3

75 , a =


v̇

 ̇

�
, s

+ =

2

664

X + v cos()�t

Y + v sin()�t

v + v̇�t

 + ̇�t

3

775 where

v and v̇ are the longitudinal velocity and acceleration, and
 ̇ are the heading angle and yaw rate.

The pedestrians follow a double integrator model with

s =

2

64

X

Y

vx

vy

3

75 , a =


v̇x

v̇y

�
, s

+ =

2

64

X + vx�t

Y + vy�t

vx + v̇x�t

vy + v̇y�t

3

75 .

Indeed, both models consists of basic differentiable func-
tions that can be incorporated in a neural network. We
also put bound on the inputs v̇ 2 [�5m/s, 5m/s], ̇ 2
[�1m/s

2
, 1m/s

2], vx, vy 2 [�5m/s, 5m/s] so that the
generated trajectory predictions are dynamically feasible.

A.3. Collision Check
We model pedestrians as circles with varying radius and

vehicles as rectangles. The collision between pedestrians
is straightforward to check, simply by taking the Euclidean
distance between the two pedestrians. Collisions involving
vehicles are checked in the local coordinate frame of the ve-
hicle. Fig. 9 shows the case with a pedestrian and a vehicle,
and the collision function is

Col(�X,�Y, L,W) = max{|�X|� L

2
, |�Y |� W

2
}.

Vehicle-to-vehicle collision is a bit tricky since it in-
volves two rectangles. As shown in Fig. 10, we use the

Figure 9. Collision check between a vehicle and a pedestrian

Figure 10. Collision check between two vehicles

four corners to calculate the Col function:

Col(�X1:4,�Y1:4, L,W)

=max

8
><

>:

|�X1|�
L

2
, ...|�X4|�

L

2
,

|�Y1|�
W

2
, ...|�Y4|�

L

2

9
>=

>;
.

Note that the collision functions are all differentiable (at
least piecewise differentiable), making it convenient to in-
clude them in the training process as regularization.

A.4. Diversity Scheduling during Training
The parameter ↵ serves as a tuning knob to adjust the

tradeoff between encoder accuracy and diversity. Dur-
ing training, we start with a small ↵ so that the decoder
can learn diverse trajectory patterns without mode collapse,
then increase ↵ to improve the encoder’s prediction accu-
racy. When ↵ is above a threshold, we detach the predic-
tion error loss of all modes but the one with the largest Q
in Eq. (4) from the gradient graph to avoid mode collapse.
This allows us to reduce the mode collapse under a small ↵
while continue to improve the encoder on the mode proba-
bility prediction.

A.5. Diverse Sampling from Product Latent Space
Since P (z|x) is calculated with factor graphs, two clique

modes with similar latent variables, e.g., two z-s that only

differ at one node in the clique, may have similar proba-
bilities,causing the greedy sampling result to lose diversity.
This issue is well-known in Markov random fields and we
follow the simple diverse sampling scheme in [5]. To be
specific, we use a greedy algorithm to pick z one by one as

zk+1 = argmax
z2Z

p(z|x)

s.t. 8zi, i = 1, ..., k,�(z, zi) � �,

where � is a distance function, for our setup, �(z1, z2) =
|{j|z1j 6= z

2
j }|, i.e., the number of nodes with dif-

ferent latent variables under z1 and z2. For example,
�([0, 1, 2], [1, 1, 2]) = 1,�([1, 0, 0], [2, 1, 0]) = 2.

