Virtual Elastic Objects

—Supplemental Material—

Hsiao-yu Chen!-3, Edith Tretschk?:3, Tuur Stuyck3, Petr Kadlecek?, Ladislav Kavan?, Etienne Vougal, Christoph Lassner®
1University of Texas at Austin, 2Max Planck Institute for Informatics, >Meta Reality Labs Research

This supplemental material contains additional informa-
tion on several aspects covered in the main paper.

1. Capture

Table 1. Purchase links for the PLUSH dataset. These are Amazon
links for all of the items we acquired for our PLUSH dataset (links
working as of September 2021).

Object | Baby Alien Dino Rainbow _ Dino Blue Dino Green _Fish _Leaf _Serpentine Mr. Seal _Pillow Pony Dog _Sponge
Link | €) [) € € €) € £ € [

The PLUSH dataset. With the presented method and
dataset, we hope to encourage further research in the direc-
tion of the reconstruction of elastic objects. To facilitate fu-
ture work, we will publish the PLUSH dataset (our record-
ings as well as our reconstructed point clouds). However,
since the dataset itself is insufficient for research that in-
volves improvements to data capture, we provide the Ama-
zon links to buy all objects of the PLUSH dataset in Table 1
to enable researchers to use novel capture techniques and
compare their results to the presented method.

(@) (®)

Figure 1. Capture System. a) Top-down view during a capture
from the view of one of the three cameras used for tracking the air
exhaust nozzle. The ArUco marker is visible prominently. In the
background, the ‘fish’ plushy can be seen during capture. b) Typ-
ical camera layout during a capture. The three cameras used for
tracking are around 60cm away from the capture subject; the re-
maining cameras roughly form two circles.

Time Synchronization. Ideally, the cameras of the cap-
ture system are time-synchronized via gen-lock (generator

locking, i.e., a single source controls all camera shutters).
However, the cameras we used lack this feature and we
found that even within each triplet, the grey-scale and RGB
sensor are not gen-locked and drift enough to accumulate
an offset of multiple frames over tens of seconds. We use
a one-camera-per-controller configuration with no other de-
vices using the USB bus on each recording host, thus en-
suring un-blocked transmission of frames to the host and
use the received time as frame timestamp. By synchroniz-
ing the controllers using the Precision Time Protocol (un-
fortunately only using software timestamps), we manage to
achieve mostly reliable time synchronization.

Camera Layout and Recording Protocol. Figure 1
shows an example view into the capture system during a
capture and an overview of the camera layout. We fix the
objects using adhesive strips onto a static recording surface.
Depending on the object type, we attach fishing line onto
extremities to 1) move the extremities during the record-
ing and 2) keep the extremities fixed while moving the air
stream over the object surface. Before starting the record-
ing, we move all extremities into a neutral position that
allows seeing them on camera from all angles—this helps
forming the ‘canonical space’ reconstruction for NR-NeRF.
After starting the recording, we first move all extremities
symmetrically (for example, arms and ears all forward, then
all backward; fins down, then fins up). After concluding all
extremity movement, we fix the extremities in place in the
neutral position and start moving the air stream over the
object surface. Overall, we end up with recording times be-
tween 32s and 67s.

2. 4D Reconstruction

Regularization Losses. We modify NR-NeRF in several
ways to improve the result quality. The input videos contain
background, which we do not want to reconstruct. We ob-
tain foreground segmentations for all input images via im-
age matting [!] together with a hard brightness threshold.
During training, pixels that are marked as background do
not use the reconstruction loss but instead use a background

https://amazon.com/dp/B08RYXFQJY
https://amazon.com/dp/B0998ZSP22
https://amazon.com/dp/B077PR8DX6
https://amazon.com/dp/B00J4RSTYO
https://amazon.com/dp/B08N5DRDX6
https://amazon.com/dp/B0787NPJ2G
https://amazon.com/dp/B08X4114LB
https://amazon.com/dp/B083BJ6Y2B
https://amazon.com/dp/B08QM7XYSD
https://amazon.com/dp/B075LLBDGN
https://amazon.com/dp/B07FGDY3ZF
https://amazon.com/dp/B08D6G6SQQ

loss on the S point samples along the ray:

1
gZ:O(Xs—|"b(XSa1t))' (D

s<S

Lbackgmund =

Lyackground clears spurious geometry from empty space.
When later extracting point clouds, we need opaque sam-
ples on the inside of the object as well. However, we find
that Lygckground leads the canonical model to prefer empty
space even inside the object. We counteract this with a den-
sity loss

1
Ldensity = 7§ Z 10-8§23/<5 aS,O(X + b(X, lt))a (2

s<S

which raises the opacity of point samples along a ray that
are ‘behind’ the surface, i.e. samples whose earlier samples
have an accumulative alpha value of at least 0.8. This loss
term acts on foreground pixels only. Furthermore, we en-
courage the space in front of the surface to be empty as well
by using:

1
Lforeground = g Z 10-3225’<5 aslo(x + b(X, lt)) (3)
s<S

We get slightly better results by first building a template
by pretraining the canonical model on frames with ¢ < 2
for 50k iterations and subsequently tracking the template
by only optimizing for the ray-bending network (and its in-
verse) for all images for 150k iterations.

Greyscale Input. Our capture system not only provides
RGB streams but also greyscale images. We use these
for supervision as well. However, our appearance model
c(x) regresses RGB values and hence renders colored pix-
els. During training, we optimize for a linear transforma-
tion parameterized by (a,, a4, a;) € R? to convert the pixel
color (r, g, b) to grey-scale a = a,r + agg + a»b. We share
(ar,agq,ay) between all grey-scale input images.

Inverting the Deformation Model. We train a
coordinate-based MLP w to approximate the inverse
of the ray-bending network. To that end, we use an ¢
cycle-consistency loss on each point sample x:

Lcycle - ‘W(X+b(x7lt)alf> +b(xa 1t)|a (4)

which encourages w to regress the negative of b(x,1;) at
(x + b(x,1;),1;). To focus on the relevant areas, we do
not apply this loss term to background pixels. In order to
not influence the reconstruction, we do not backpropagate
gradients from this loss term into b.

= o

Figure 2. Point cloud before and after the clean up. We show the
comparison of the reconstructed point cloud before and after the
removal of background noise.

Point Cloud Extraction. After training, we need to con-
vert the reconstruction from its continuous MLP format into
an explicit point cloud. To achieve that, we cast rays R from
all input cameras and extract points that are at or behind
the surface and whose opacity exceeds a threshold. Specif-
ically, we define the surface for a ray r € R as being lo-
cated at the point sample s} with accumulated alpha values
(ZS,G: ayr) closest to 0.5, the median. We consider all
samples s > s that fulfill g > 0.05 as part of the extracted
point cloud. These samples x; , can then be deformed from
the canonical model into the deformed state at time ¢ via the
inverse network: X y; = X5 r + W(Xs r,1;). For time ¢, we
take all these samples from all rays to obtain a deformed
point cloud P, = {X;,|as > 0.05,s > s¥,s € r,r € R}.
We thus have a 4D reconstruction in the form of a 3D point
cloud’s evolving point positions { P; };, which are in corre-
spondence across time.

The resulting point cloud contains spurious points due
to imperfections in the reconstruction. Although there are
usually a handful of points close to the object, most of these
spurious points occur as clusters far away from the object.
The latter we eliminate using the object bounding box, and
we remove the former manually. Given that the spurious
points have much lower density compared to the object of
interest, the cleanup can also be done automatically by re-
moving point cloud cluster under certain density threshold.
See Figure 2 for an example comparison before and after
cleanup.

3. Simulation

Newton Optimization. We use the standard Newton’s
method with backward line search to find the equilibrium
position y that solves the variational problem:

arg min E(y).)
y

Starting with an initial guess yq, we update the solution it-
eratively using the update step

Y =Yk—1 —oqdy,_, (6)
dy,_, = H.',VE,_, 7

where Hy, and VE, are the Hessian and gradient of the en-
ergy E evaluated at the current iterate y;. We iterate over
the solution until the norm of the Newton update, ||dy]||, is
sufficiently small. We compute the step size o using a stan-
dard backtracking line search (starting at ; = 1, we halve
the step size until E(y;) < E(yx—1)). The value of oy is
not a continuous function of the object material parameters,
but in practice, is equal to 1 during almost every Newton
step; we therefore treat it as constant when performing au-
tomatic differentiation of y.

Initial Guess. To reduce the number of Newton iterations
required for each forward simulation and to capture hys-
teretic effects (where E has multiple local minima and the
equilibrium state of the object depends on the past trajec-
tory of the object), we warm-start the optimization by set-
ting the initial guess y to the equilibrium position from the
previous frame, for each consecutive frame sequence used
during training and validation. For the first frame in a frame
sequence, we choose the object reference pose as our initial
guess.

Position Constraints. During forward simulation, certain
points on the object boundary are subject not only to ex-
ternal forces, but also to position constraint. For example,
some objects were taped to the ground during capture, or
had fishing line attached to extremities. Additionally, we do
not attempt to model static friction of the PLUSH objects
against the ground; we assume friction is sufficiently strong
to keep points in contact with the ground fixed in place.

Although one could enforce these position constraint us-
ing hard constraints (by removing those points as degrees
of freedom in the optimization of y), doing so is problem-
atic in practice due to the presence of the logarithmic term
in the Neo-Hookean elastic energy. An abrupt change in
the positions of constrained vertices (due to tugging on the
fishing line, e.g.) can lead to the inversion of the elements
and thus to a negative J, which makes the elastic energy
undefined. To prevent this, we treat the constraints as soft
instead, using a penalty potential term as described in the
main text.

4. Rendering

We can upsample the point cloud generated by the sim-
ulation to make it denser, e.g. for visualization. Unlike
for rendering, we need to consider forward warping for this
case. We first extract points from the canonical model as
described in Sec. 3.2 (main paper) to obtain a fuller point
cloud F. = {y%}s. From the simulation, we have a less
dense point cloud, namely S, and S;. We now seek to re-
place the forward warping of w: We interpolate the defor-
mation offsets d'lf = x¢ — x¢ with IDW to obtain the dense,

deformed point cloud Fyy = {y%} s:

=yt) =——d, (8)
gezj\/ Zs 'eN Wsr

where A and w; are defined analogously to Eq. 14 (main
paper).

5. Runtime

The upper bound of the run time required for each step
of our pipeline is 20/ for reconstruction on four NVIDIA
V100 GPUs, 13h for learning the parameters on a AMD
Ryzen 5 1600 six-core processor, 5min for running a new
simulation, and 10man for rendering a frame.

References

[1] Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta,
Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman.
Real-Time High-Resolution Background Matting. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8762—-8771, dec 2021. 1

	. Capture
	. 4D Reconstruction
	. Simulation
	. Rendering
	. Runtime

