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8. Supplementary Material
In this supplementary material, we provide additional

details about:

1. Supplementary video for qualitative assessment of our
model’s performance.

2. Acoustic AVSpeech filtering process (referenced in
Sec. 4 of the main paper).

3. Acoustic changes after each alteration step (referenced
in Sec. 5).

4. Implementation and training details (referenced in Sec.
6).

5. Evaluation and baseline details (referenced in Sec. 6).

6. Ablations on acoustics alteration (referenced in Sec.
6.2).

7. Ablations on GAN losses (referenced in Sec. 6).

8. Sim2real generalization (referenced in Sec. 6).

9. Applicability on non-speech sounds (referenced in
Sec. 4).

10. Interpretation of the neural network results.

11. Does the model capture room size?

12. User study interface.

13. Societal impact (referenced in Sec. 7).

8.1. Supplementary Video

This video includes examples generated by AViTAR
and baselines for SoundSpaces-Speech and Acoustic
AVSpeech. We also demonstrate application scenarios for
augmented reality and video conferencing. Wear your head-
phones for a better listening experience.

8.2. Acoustic AVSpeech Filtering Process

As noted in the main paper, we apply a series of auto-
matic filters to the AVSpeech dataset [2] in order to select
those clips relevant for our task. Here we detail those steps.

AVSpeech is a large-scale audio-visual dataset com-
prising speech video clips with no interfering background
noises. The segments are 3-10 seconds long, and in each

clip the audible sound in the soundtrack belongs to a sin-
gle person speaking who is visible in the video. In total,
the dataset contains roughly 4700 hours of video segments,
from a total of 290k YouTube videos, spanning a wide vari-
ety of people, languages and face poses.

Since our dereverberation model used during acoustics
alteration is trained on an English corpus, we first run a lan-
guage classification algorithm over all the AVSpeech audio
clips and remove clips where the spoken language is not En-
glish. After this step, there are still many videos which are
almost anechoic, sometimes due to the audio being recorded
post video recording, or to the speaker using a microphone
very close to his/her mouth. To remove such examples, we
train an RT60 predictor on the SoundSpaces-Speech (details
in Sec. 8.5), run it on all AVSpeech clips and remove exam-
ples where the predicted RT60 is less than 0.1s. Lastly, we
balance the distribution of RT60 such that it is not heavily
skewed toward the anechoic side.

8.3. Acoustic Changes After Each Alteration Step

In Table 5, we show how the acoustics change after
performing each step in the acoustics-alteration process by
evaluating RT60 and MOS of the processed speech on the
test split. What we expect to see is that the original au-
dio gets cleaner via dereverberation, then becomes increas-
ingly reverberant and noisy as we perform the subsequent
steps that are designed to disguise the audio with other room
acoustics from the sampled IR. This is indeed what we ob-
serve. The original audio input has a high RT60 value on
average, but after dereverberation the RT60 drastically goes
down to 0.088s and the speech quality becomes better. After
reverberating, the average RT60 goes up again, with a lower
MOS score. Adding noise slightly improves the RT60 value
and reduces the speech quality. For clean speech, its aver-
age RT60 is much lower and the MOS score is also high.
Note that here we show the MOS scores, not the MOS er-
rors; higher values indicate higher quality speech.

8.4. Implementation and Training Details

The 1D convolutions for encoding and decoding the
waveform have kernel sizes of 16, 8, 4, 4 and strides
8, 4, 2, 2 respectively. The total downsampling/upsampling
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Acoustic Changes RT60 (s) MOS

Original audio 0.436 2.778
Dereverb. 0.088 2.970

Dereverb. + Randomization 0.424 2.620
Dereverb. + Randomization + Noise 0.462 2.513

Clean 0.049 3.285

Table 5. Acoustic changes after each alteration step.

rate D is 128. The latent feature size for Ai, Vi and Mi is
512. The number of cross-modal encoders N is 4. There
are 8 attention heads in each attention layer. The number
of sub-discriminators K is 3 and λ1 and λ2 are 1 and 45,
respectively. The learning rate for the generator and dis-
criminators are 0.005 and 0.002.

The input audio clip is 2.56 seconds for both datasets.
On SoundSpaces-Speech, the input image size is 192×576,
and we randomly shift the panoramic image during train-
ing for the model to learn viewpoint-invariant room acous-
tics features, following the original paper [1]. On Acoustic
Speech, the input image is first resized to 270 × 480, fol-
lowed by random cropping to size 180 × 320 and random
horizontal flip for data augmentation. We train all mod-
els 600 epochs on SoundSpaces-Speech and 300 epochs on
Acoustic AVSpeech, and evaluate the checkpoint with the
lowest validation loss on the test set. We will share the code
and data upon acceptance.

8.5. Evaluation and Baseline Details

RT60 estimator. On SoundSpaces-Speech, we have ac-
cess to the reverberant speech clip as well as the impulse
response. We first encode the 2.56s speech clips as spec-
trograms, process them with a ResNet18 [3] and predict the
RT60 of the speech. The ground truth RT60 is calculated
with the Schroeder method [4]. We optimize the MSE loss
between the predicted RT60 and the ground truth RT60.

Image2Reverb [5]. We obtained the code from the au-
thors and made some changes to accommodate their model
on our dataset. First of all, we replace the depth estimator
with the ground truth depth image that we have access to on
SoundSpaces-Speech. We also increase the size of the input
image to match the size of the panorama. Lastly, we change
the sampling rate from 22050 to 16000. The rest of the code
stays the same, including the visual encoder pretrained on
Places365 and the auxiliary loss on RT60 prediction.

8.6. Ablations on Acoustics Alteration

Table 3 shows ablations on the proposed acoustics-
alteration strategy. Removing either the acoustic random-
ization or noise leads to worse generalization to novel
sounds compared to the full process. This is because with-
out these two steps, it is easier for the model to overfit

AViTAR STFT RTE (s) MOSE

Full model 0.822 0.062 0.195
w/ LMel 2.907 0.190 0.833
w/ LFM 0.831 0.063 0.192

Table 6. Ablations on GAN loss components.

the residual acoustic information in the dereverberated au-
dio rather than use the visual content for recovering correct
acoustics. If both are removed (“Dereverb.”), the model
does not generalize to novel sounds. Similarly, the dere-
verberation step is also very important. If we simply ran-
domize the acoustics with another IR and add noise to the
original audio (“AT + Randomization + Noise“), there is
no training sample that has less reverberation than the target
audio, and the model simply learns to perform dereverber-
ation; this leads to poor generalization as well. Altogether,
all three steps are necessary to create acoustic mismatch
with the image and force the model to recover the correct
acoustics based on images.

8.7. Ablations on GAN Losses

Here we detail each GAN loss component and how
they affect the performance. Mel-spectrogram loss LMel is
the L1 distance between two mel-spectrograms, which im-
proves the perceptual quality. Feature matching loss LFM

is a learned similarity metric for features of the discrimina-
tor between two audio samples. We ablate these two loss
terms separately and the results are shown in Table 6. Re-
moving the Mel-spectrogram loss leads to a great reduction
on all metrics. Removing the feature matching loss leads
to higher STFT distance and RT60 error while marginally
lower MOS error. Overall, these two ablations show both
components are important for synthesizing realistic audio
with matched acoustics.

8.8. Sim2real Generalization

To understand how well the model trained on synthetic
dataset generalizes to web videos, we train a new AViTAR
model on SoundSpaces-Speech with only RGB input, and
then test it on the Acoustic AVSpeech dataset, which yields
RTE of 0.278s, MOSE of 0.898, while the model trained
and tested on Acoustic AVSpeech gives 0.183s RTE and
0.453 MOSE (Table 1). The newly trained synthetic model
tends to generate more reverberation, likely due to the visual
discrepancy. This highlights the effectiveness of our self-
supervised acoustic alteration strategy.

8.9. Applicability on Non-speech Sounds.

To understand if our models applies to non-speech
sounds, we train AViTAR on SoundSpaces by replacing the
human speech with non-speech sounds, e.g. ringtone, mu-
sic, etc., the model has 0.064 RTE on test-unseen, higher



Figure 6. Grad-CAM for corridor scene.

Bathroom, RT60 : 0.72s Dining room, RT60 : 0.26s

Figure 7. Rooms of similar sizes but different acoustics.

Figure 8. T-SNE projection of visual features colored by room size

than human speech (0.062 RTE), while outperforming AV
U-Net (0.074 RTE) and the input (0.176 RTE). So while
we focus on speech for application reasons, this positive
non-speech result makes sense because our model design is
agnostic to the type of audio.

8.10. Interpretation of the Neural Network Results.

To show how the model understands the image, we can
use Grad-CAM to visualize the activations. For example, in
Fig. 6 Grad-CAM highlights two sides of the corridor be-
cause they lead to longer reverberation. Fig. 7 shows two
rooms of similar sizes, and our model predicts longer RT60
for the bathroom likely because it has more reflective mate-
rials and leads to longer reverberation time.

8.11. Does the Model Capture Room Size?

To understand if our learned model captures room sizes,
we check two things: 1) whether the learned visual features
manage to pick up on room size (the clustered colors in
Fig. 8 suggest yes), and 2) whether we output only a nar-
row set of acoustics for the same room type (the distribu-
tion of RT60s over all kitchens in the test split (Table 7)
suggests no). Furthermore, we project visual features on
the 2D plane colored by visible room volume with T-SNE
(shown in Figure 8). The gradient from small room volumes
to large room volumes indicates that room size is captured
in visual features. In addition, we show the distribution of
RT60s over all kitchen environments in the test-unseen split
in Table 7 and it is quite diverse.

RT60 (s) ≤ 0.2 0.2-0.3 0.3-0.4 0.4-0.5 ≥ 0.5
Percent (%) 11.9 55.0 27.7 5.5 1.0

Table 7. RT60 distribution over kitchens (other scenes show simi-
lar diversity).

Figure 9. User study interface on MTurk. Given a reference im-
age, a reference audio and two clips generated by AViTAR and a
baseline (with shuffled order), participants are asked to pick the
best clip that matches the reverberation in the reference image and
audio.

8.12. User Study Interface

Figure 9 shows the interface for our user study on
MTurk. See details of the instruction in the caption.

8.13. Societal Impact

We believe this work can have a positive impact on many
real-world applications, e.g., video editing, film dubbing,
and AR/VR, and discussed in the paper. However, future
applications built on such technology must also take care to
avoid its misuse. The ability to transform a voice to sound
like it comes from a new environment could potentially be
misused for enhancing deep fake videos, by matching an
audio not recorded along with the video to the visual stream.
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