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A. Code
As a part of the supplementary materials, the code

used to conduct experiments is attached as a separate zip
archive. The zip archive contains the implementation of the
AIT method on multiple zero-shot quantization backbones:
GDFQ [4], ARC [6], and Qimera [1]. For reproducibility,
the experiment environment setting and training scripts are
included for all backbones. The code is under the terms of
the GNU General Public License v3.0.

B. Lower Bit-width Experiments
Further experiments on GDFQ and ARC were conducted

in lower-bit settings. The experiment results are shown in
Tab. 1 Following the main paper, the ResNet family and
MobileNet are denoted as ‘RN’ and ‘MB’, respectively. We
tested 3w3a and 3w4a quantization settings for the ImageNet
experiments and further down to 2w2a and 2w3a for Cifar-
10/100, which we found to be the lowest bits GDFQ and AIT
converge.

*Corresponding author

Dataset Model Bits
GDFQ ARC

Baseline AIT Baseline AIT

ImageNet

RN-18 3w3a 20.69 36.34 1.00 36.70
3w4a 39.73 53.55 2.54 56.77

RN-50 3w3a 0.21 1.31 0.20 3.98
3w4a 26.85 37.50 1.37 49.34

MB-V2 3w3a 5.50 13.83 0.20 30.35
3w4a 26.87 37.77 0.22 47.41

Cifar-100 RN-20

2w2a 1.41 2.09 1.35 1.55
2w3a 1.04 1.13 1.25 1.14
3w3a 49.62 48.64 28.54 34.39
3w4a 59.70 61.37 50.47 58.65

Cifar-10 RN-20

2w2a 16.48 15.57 16.18 13.47
2w3a 37.64 40.98 20.87 20.42
3w3a 80.70 80.49 52.99 51.78
3w4a 90.02 90.20 82.10 82.98

Table 1. Low Bit-width Experiments Results

C. Experiments on Additional Network Models
We conducted a further evaluation of our method on vari-

ous networks: InceptionV3 [3], SqueezeNext [2], and Shuf-
fleNet [5]. The experimental results are shown in Table 2.
Compared with the GDFQ baseline, our method still out-
performs by a huge margin on all settings regardless of the
quantization bitwidth. Furthermore, experimental results
show that AIT is especially effective on smaller networks.
This result again supports our observation in the main body
that the limited capacity of a small network hinders the train-
ing phase from matching multiple loss terms simultaneously.

D. Comparison with Label Smoothing
Label smoothing is a regularization technique that re-

places one-hot label y into a smooth label y′ by

y′ = (1− c)y + c/K, (1)

where K is the number of classes and c is a label smoothing
value. Label smoothing is known to help neural network
training to avoid overfitting and increase generalization capa-
bility. Therefore, one might think that label smoothing can
also help flatten the cross-entropy (CE) loss surface by its
nature. To answer the question, we conducted comparative
experiments with various label smoothing parameters. The
experiments evaluate how the label smoothing affects the
performance of GDFQ baseline and CE-only setting, which
drops KL divergence from the training loss.

Dataset
Model

(FP32 Acc.) Bits GDFQ
GDFQ
+AIT

ImageNet

InceptionV3 4w4a 70.57 73.34 ( +2.77 )
79.00 5w5a 77.25 77.67 ( +0.42 )

SqueezeNext 4w4a 26.21 45.37 ( +19.16 )
69.39 5w5a 56.07 62.76 ( +6.69 )

ShuffleNet 4w4a 19.72 27.80 ( +8.08 )
65.07 5w5a 45.92 48.97 ( +3.05 )

Table 2. Additional experiments on various network models.
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ρ
Cifar-100 ImageNet

ρ
Cifar-100 ImageNet

RN-20 RN-18 RN-20 RN-18

0.0005 65.41±0.20 64.48±0.28 0.00009 65.20±0.29 65.84±0.07
0.0004 65.55±0.15 65.23±0.10 0.00008 65.29±0.19 65.66±0.17
0.0003 65.44±0.34 65.41±0.53 0.00007 65.35±0.18 65.65±0.05
0.0002 65.21±0.27 65.85±0.07 0.00006 65.06±0.23 65.52±0.16
0.0001 65.04±0.13 65.51±0.09 0.00005 65.30±0.10 65.92±0.42

Table 3. Sensitivity Analysis on ρ.

Table 2 shows the experimental results. For CIFAR-10
and CIFAR-100, label smoothing did not improve perfor-
mance in any settings over the baseline GDFQ, whether with
KL divergence or not. Some improvements were observed
from ImageNet dataset, but the improvements were smaller
than that of AIT. This shows that even though label smooth-
ing helps flatten the loss surface to some degree, its effect
was not enough to reach that of AIT.

E. Further Analysis on ρ Sensitivity

We deepen the sensitivity analysis with finer levels of ρ
values. The experiments are conducted five times per setting
to demonstrate performance stability regarding ρ values. The
results in Tab. 3 show that our method can achieve a stable
accuracy level without hand-crafted hyperparameter tuning.

F. Gradient Cosine Similarity

Although the main body of the manuscript offers results
for gradient cosine similarity measured on ResNet20 with
CIFAR-10 dataset, we have done an extensive amount of ex-
periments to study the distinct gradient directionality spotted
in zero-shot quantization task. Here we share the results to
further support our findings.

For CIFAR-10 and CIFAR-100 dataset, we used ResNet-
20, ResNet-56, ResNeXt-29 32x4d, WRN28-10, and
WRN40-8. On ImageNet, we evaluated on ResNet-18,
ResNet-50, MobileNetV2, and InceptionV3. The experi-
ment compares the directionality of loss functions in train-
ing these networks under two different settings: zero-shot
quantization (ZQ) and knowledge distillation (KD). In the
knowledge distillation setting, we used the same network
for both the student and the teacher (self-distillation) for fair
comparison against the Zero-shot quantization setting.

Fig. 1 shows the results for CIFAR-10, and Fig. 2 for
CIFAR-100. Although the quantitative difference of cosine
similarities and the details of its change throughout the train-
ing differs across different datasets and networks, one trend
is consistent: KL divergence and cross-entropy disagrees
with each other more under the zero-shot quantization set-
ting. Such tendency is usually maintained throughout the
training.

G. Hessian Trace
In this paper, Hessian matrix was used to measure the

local curvature of the loss surface and compare the general-
izability of the two distinct loss terms. Since Hessian matrix
itself is enormous in size and computations involving its
entirety is considered almost infeasible, analyzing the trace
value of the matrix is often the most preferred way to study
its characteristics. Adding to our results on Section 3.2 of the
main body, we share further analysis on the loss curvature
using Hessian trace.

We conducted further analysis on CIFAR-10 and CIFAR-
100 datasets, on four different network models: ResNet-
20, ResNet-56, WRN-28, and WRN-40. For all cases, our
findings are the same. KL divergence has much smaller local
curvature than the cross-entropy, where the gap is larger in
zero-shot quantization settings.
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Dataset Model Method c∗ AIT
0.00† 0.10 0.30 0.50

Cifar-10 ResNet-20 Baseline 90.25 89.67 88.85 88.52 91.23CE only 88.36 88.67 88.21 87.89

Cifar-100 ResNet-20 Baseline 63.39 60.50 59.11 58.53 65.80CE only 56.76 60.10 59.13 57.81

ImageNet ResNet-18 Baseline 60.60 62.41 62.57 62.25 65.51CE only 60.33 62.48 62.27 62.18
†No smoothing *Label smoothing parameter.

Table 4. Performance of GDFQ with label smoothing in 4w4a setting.

(a) CIFAR-10 ResNet-20 (b) CIFAR-10 ResNet-56

(c) CIFAR-10 WRN28-10 (d) CIFAR-10 WRN40-8

Figure 1. Gradient directionality of KL divergence and cross-entropy loss measured with CIFAR-10 dataset. In each setting, bottom left
plots gradients under zero-shot quantization and bottom right plots gradients from knowledge distillation (self-distillation), captured from
middle of the training.



(a) CIFAR-100 ResNet-20 (b) CIFAR-100 ResNet-56

(c) CIFAR-100 WRN28-10 (d) CIFAR-100 WRN40-8

Figure 2. Gradient directionality of KL divergence and cross-entropy loss measured with CIFAR-100 dataset. In each setting, bottom left
plots gradients under zero-shot quantization and bottom right plots gradients from knowledge distillation (self-distillation), captured from
middle of the training.
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(a) CIFAR-10 ResNet-20
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(b) CIFAR-10 ResNet-56
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(c) CIFAR-10 WRN-28
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(d) CIFAR-10 WRN-40
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(e) CIFAR-100 ResNet-20
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(f) CIFAR-100 ResNet-56
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(g) CIFAR-100 WRN-28
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(h) CIFAR-100 WRN-40

Figure 3. Hessian trace of KL divergence and cross-entropy, measured across diverse datasets and networks.
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