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The supplementary material of this paper includes a
video and this document. We provide more detailed de-
scriptions of our method in Section A and implementa-
tion details (physics simulation, baselines, metrics, and the
learning algorithm) in Section B. Furthermore, we present
additional qualitative results, as well as more detailed quan-
titative results in Section C. Lastly, we discuss potential so-
cietal impacts in Section D and provide a glossary for the
notations used in this paper in Section E.

A. Method Details
We presented our method in Section 3. Importantly,

we functionally separate the 6DoF global motion synthe-
sis module from the grasping policy. We achieve this by
explicitly separating the information flow in the feature ex-
traction layers φ(·) and ψ(·), similar to [4]. We show in
Section 4.4 that this enables solving the complex dynamic
grasp synthesis task. We now provide more details on the
feature extraction layers.

A.1. Grasping Feature Extraction Details

We detail our method’s grasping policy in Section 3.2. In
this section, we provide additional details on how we extract
the features of the goal space presented in Section 3.2.1.
Hence, we need to extract object-relative features from the
label D in order to be invariant to the object 6D pose during
the grasping phase. Since collisions with the object occur
when learning a grasp, it is crucial to have a representation
that is flexible with respect to the object’s pose, even when
its position changes. We therefore focus on explaining the
goal components G = [g̃x|g̃q|gc].

Relative target positions: The term g̃x measures the 3D
distances between the hand’s current and the target joint 3D
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positions xh and xh, respectively. Hence, to get the 3D
target positions xh, we utilize the label’s information about
the (global) 6D poses of the object To and the hand Th, as
well as the target joint configuration qh. Specifically, we
use forward kinematics to compute the global target pose
of the hand, which we then convert into the object-relative
coordinate frame using To. This provides us with the 3D
target positions xh for all the joints. We then apply the same
procedure to the current state of the environment, using the
object’s current 6D pose To, the hand’s current 6D pose Th

and the hand’s current joint configuration qh. This gives us
the 3D joint positions of the current hand configuration xh
in the object-relative frame. Next, we measure the distance
between the current and target joint positions:

gx = xh − xh.

Our final step consists of transforming gx into wrist-relative
coordinates, finally providing us with g̃x.

Relative target rotations: The term g̃q represents the
angular distances between the current and target rota-
tions for the joints and the wrist. For the local joint
rotations, we can directly compute the distance between
the current joint rotations qh and the target joint rota-
tions qh. For the orientation of the wrist, we follow
the abovementioned procedure to achieve invariance to
the object pose. Hence, we convert the global 6D hand
target pose Th into an object-relative target pose using
To. We apply the same conversion to the current 6D
hand pose Th using the object’s current 6D pose To. We
then compute the angular distance between the current
and target object-relative poses. Finally, we transform the
computed distance into wrist-relative frame for consistency.



Target contacts: The contact goal vector gc =
(gc, If ,gc>0) is the concatenation of two vectors, namely
the desired contacts gc and the term Igc>0. To get the de-
sired contacts for each hand joint from the grasp label, we
measure the distance between all of a joint’s vertices of the
created meshes (Section 3.1) and all the vertices of the ob-
ject mesh, which can be computed from the grasp label D.
Hence, for each joint j, the desired contacts are then deter-
mined as follows:

gc,j = I

[
I∑
i=1

O∑
o=1

I[‖vi − vo‖2 < ε] > 0

]
. (9)

If the distance between any vertex vi of a joint j and an
object vertex vo is below a small threshold ε (in our case
0.015m), we determine that the finger part should be in con-
tact and hence the contact label should be equal to 1, other-
wise 0.
The component Igc>0 is a one-hot encoding vector indicat-
ing which of the desired contacts gc are active. Please note
the redundancy in gc, which may be further improved in
future work.

A.2. Motion Synthesis

Ours As described in Section 3.3, we use a closed-loop
control scheme to move the hand from its current 6D pose
Th to the estimated hand pose T̂h. In particular, we com-
pute the distance between the current and estimated target
6D object pose ∆T̂h = (T̂o−To). This term is then added
to the current 6D pose of the hand and weighted by a factor
β:

Tpd = Th + β∆T̂h. (10)

The term Tpd is then sent to the PD-controller of the sim-
ulation. The output of the PD-controller are torques that
generate a motion to guide the hand to the estimated target
pose T̂h by recomputing ∆T̂h after each simulation up-
date. Note that in the motion synthesis phase, this module
replaces the control of the first 6DoF of the grasping policy.

Ours+Learned Policy For the learned variant of the
motion synthesis module, we propose a feature layer
ψ(s,Tg,D) and a motion policy πm(am|ψ(s,Tg,D)). In-
tuitively, it is not necessary for the motion policy to know
about the proprioceptive information of the hand, such as
joint angles and angular velocities. Therefore, we only ex-
tract features which are relevant to the global control of the
6D hand pose Th. The feature extraction layer ψ(s,Tg,D)
receives the state s and the 6D target pose Tg of the object.
The output of this layer is the following:

ψ(s,Tg,D)=(Th, Ṫh,To, Ṫo,go,x,go,q), (11)

where the first four terms include information about the 6D
poses and respective velocities of the hand and object. Cru-
cially, the features go,x and go,q entail information about

the object’s current and target pose. The term go,x is the
Euclidean distance between the object’s current and target
position go,x = To,x − Tg,x in global coordinates. Sim-
ilarly, go,q computes the angular distance between the ob-
ject’s current and target pose go,q = To,q −Tg,q . For mo-
tion synthesis, we use the following reward function:

rm = αxrm,x + αqrm,q. (12)

The position reward rm,x = empe measures the distance be-
tween the current and target object position (Eq. 13). The
angular reward is the geodesic distance between the object’s
current and target orientation rm,q = egeo (Eq. 14). We
weigh the two components with factors αx and αq .
In general, we propose a learning based variant because we
believe it could come in as a viable solution when the con-
trol of the global hand pose becomes more complex. In the
current work, we directly control the 6D pose of the hand.
In such a setting, an IK-based solution is expected to out-
perform a learning-based variant. In the future, one could
extend our method to include a biomechanical model of a
full arm. This would add inherent constraints to the hand
movements and hence increase the complexity of control-
ling the hand successfully. On the upside, this may lead to
more natural movements during the motion synthesis phase.
Hence, in such a setting a learning-based variant may out-
perform an IK-based solution.

B. Implementation Details
B.1. Physics Simulation

To train our method, we use a physics simulation as de-
scribed in Section 3.1. We chose RaiSim [7], since it allows
modeling non-convex meshes and efficient parallel training.
We first create a controllable hand model (Fig. 5). Similar
to [13], we compute the argmax of the skinning weights to
assign each of the vertices to a body part. We then group the
vertices accordingly and create a mesh for each body part.
We limit the joint range in a data-driven manner. Specifi-
cally, we estimate the joint limits by parsing the DexYCB
dataset and acquiring the maximum joint range, similar to
[12]. Since the data may not contain the full range of pos-
sible joint displacements, we increase this limit by a slack
constant. In practice, we found that approximating the col-
lision bodies with primitive shapes (i.e., the simple objects
and the hand meshes) led to an order of magnitude increase
in training speed. This is because the simulation time in-
creases roughly quadratically with the number of collision
points. Therefore, for more complex object meshes, we ap-
ply a decimation technique to reduce the number of vertices
(Fig. 6). For the simpler meshes, we use primitive shapes
and mesh alignment as an approximation. For training and
evaluation, we therefore use the simplified meshes (except
for the interpenetration metric, see Section B.3).



Figure 5. Physics Simulation. We create a controllable hand
model and deploy it in the RaiSim physics-engine [7] to provide
us with information about contacts and dynamics.

Figure 6. Mesh Decimation. We use mesh decimation to reduce
the number of vertices of the object mesh. On the left is the orig-
inal object mesh, on the right the decimated mesh. This helps to
speed up the physics simulation during training.

B.2. Learning Algorithm

We train policies by using our own implementation of
the widely used PPO algorithm [11]. We use the param-
eters summarized in Tab. 5 for training. We create a par-
allelized training scheme with a worker per grasp label for
data gathering (amounting to e.g. 376 parallel environments
for DexYCB). We then train a single policy over all ob-
jects, containing all grasps from the training set. For the
GraspTTA [8] and ContactOpt [5] experiments, we double
the amount of workers, such that they roughly correspond to
the batch size of the DexYCB experiment (i.e., 400 workers
with 2 workers for each label). Each training cycle utilizes a
single GPU and 100 CPU cores and takes up to 24-72 hours
of training.

B.3. Metrics Details

This section contains an extended description of the met-
rics depicted in Section 4.2.1.
Success Rate: We define the success rate as the primary
measure of physical plausibility. It is measured as the rate
of sequences which maintain a stable grasp, i.e., where the
object does not slip and fall down for a period of a 5s win-
dow. We lower the surface in the simulation for this pur-
pose. A success rate of 0.0 indicates no success, 1.0 means
all sequences were successful.

Hyperparameters PPO Value

Epochs 1e4
Steps per epoch 1.2e6
Environment steps for grasping 195
Environment steps for full task 300
Batch size 376
Updates per epoch 16
Simulation timestep 2.22e-3s
Simulation steps per action 13
Discount factor γ 0.996
GAE parameter λ 0.95
Clipping parameter 0.2
Max. gradient norm 0.5
Value loss coefficient 0.5
Entropy coefficient 0.0
Optimizer Adam [9]
Learning rate 5e-4
Hidden units 128
Hidden layers 2

Weight Parameters Value

wx -2.0
wq -0.1
wc 1.0
wreg,h 0.5
wreg,o 1.0
wx,j 1.0
wx,tip 4.0
λ 5.0
αx -2.0
αq -0.25

Table 5. Hyperparameters of our method. The parameter ”steps
per epoch” is reported for the DexYCB training set with a batch
size of 376. This number varies according on the amount of grasp
labels available in the training set.

Interpenetration: We calculate the amount of hand vol-
ume that penetrates the object. To do so, we use the origi-
nal MANO mesh [10] and the high-resolution object mesh.
Hence, there is no physical simulation involved when mea-
suring interpenetration. To ensure a fair comparison against
the static baseline, we choose the last time step of the grasp-
ing phase for our method and hence omit the approaching
phase from the evaluation.
Simulated Distance: Similar to the metric proposed in [8],
we compute the mean displacement between the object and
the hand’s wrist. Instead of measuring the absolute dis-
placement, we report the mean displacement in mm per sec-
ond. We measure the displacement for a maximum window
of 5s or stop whenever the object falls and hits the surface.
Contact Ratio: For the ablation study, we measure the ratio
between the target contacts gc defined via the grasp label D
and the contacts achieved in the physics simulation I[f > 0].
We average over the whole sequence, therefore both the ap-



proaching and grasping phase are contained in this metric.
MPE: This metric is used for the motion synthesis experi-
ments. It is the mean position error between the object’s 3D
position and the object’s target 3D position, defined as go,x
(Section A.1):

empe = ‖go,x‖2 (13)

Geodesic: This is the angular metric used in the motion
synthesis experiments. In particular, the angular distance
between the object’s current orientation To,q and the ob-
ject’s target orientation Tg,q . It is defined as follows:

egeo = acos(0.5(trace(RoR
>
g )− 1)), (14)

where Ro and Rg are the rotation matrices of the corre-
sponding orientations of the object and the target 6D pose,
respectively.

B.4. Baselines

Here we provide an extended description of the base-
lines.
*-PD: Similar to [8], we place the object into the hand
via the grasp label. We then attempt to maintain the grasp
using PD-control in the physics simulation. To do so, the
hand’s 6DoF global pose Th and the joint configuration qh
are initialized with the grasp label reference directly, hence
Th = Th and qh = qh.
*-IK: We employ an offline optimization to correct for
imperfections (i.e., minor distances or penetrations) in
the label by utilizing the information about the target
contacts gc (Section A.1) and the closest points on the
object surface. In particular, for the finger parts that we
deem to be in contact, we replace the original 3D keypoints
from the grasp label xh by the closest vertex points on
the object surface. We then run an optimization to yield a
corrected target pose. The reconstructed samples are then
passed to the PD-control. We found this technique to be
effective for motion capture data, but not for the labels
from GraspTTA [8] or ContactOpt [5], likely because both
methods already inherently optimize for contact. Hence,
we omit it for the latter methods in the main text.
Flat-RL: We employ an RL baseline that does not separate
the grasping from the motion synthesis phase, but trains the
full dynamic grasp synthesis task end-to-end. In particular,
this baseline uses the concatenation of the grasping policy’s
feature layer φ(s,D) (Section 3.2.1) and the feature layer
of the learned motion synthesis module ψ(s,Tg,D) (A.2).
Hence, the policy in this case is π(a|φ(s,D), ψ(s,Tg,D)).
For the reward function we use the combination of the
reward used for the grasping policy (Eq. 4 in main paper)
and the reward for the decoupled motion synthesis policy
(Eq. 12). The weights of the different reward components
are reported in Tab. 5.

B.5. Experimental Details

Here we provide a short overview of the different object
sets and grasp labels used in each experiment.

Grasping Objects When using grasp predictions from an
external grasp synthesis method [8] (Section 4.3), we train
with the objects used in DexYCB [2]. During evaluation,
we report results on both the HO3D subset as done in [8]
and the objects from DexYCB. For the experiment with
ContactOpt [5], we train and test on the HO3D objects (ex-
cept for 019 pitcher base, which is not contained in the
dataset). Note that since the models for grasp synthesis and
the image-based pose estimates have no notion of physics in
terms of where an object is positioned in space (in contrast
to the data from DexYCB), we apply a small modification
to the simulation to ensure a fair comparison. We place the
object on a surface and allow the hand to approach from any
direction, even penetrating the surface. We achieve this by
disabling the collision response between the surface and the
hand. In future work, an optimization could filter out poses
that require approaching from beneath a surface. Also note
that since we only have access to a single grasp reference
and not a sequence for GraspTTA and ContactOpt, we start
each sequence at a predefined distance away from the object
in the mean MANO hand pose.
For the evaluation of our method in this experiment, we re-
move the surface (i.e. table) after the grasping phase. The
metrics are being measured from the moment the table is re-
moved. For the baselines, we directly start the sequence in
the target pose of both the hand and object (without a table
present).

Motion Synthesis For the experiment presented in Sec-
tion 4.4, we included a representative subset of YCB [1] ob-
jects. Namely, we used 2 cylindric objects (002 master chef
can and 007 tuna can), 2 box-shaped objects (004 sugarbox
and 061 foam), and 2 more complex objects (019 pitcher
base and 052 extra large clamp) for training and evaluation.
We use our train-split of DexYCB in this experiment. Fur-
thermore, we filter out the failed grasps from the experi-
ment in Section 4.3 and train and evaluate only on the sta-
ble grasps. Using unsuccessful grasps in this case would
not produce any viable motions, since the objects cannot
be grasped correctly to initiate the motion synthesis phase.
Each sequence starts with the grasping phase, where only
the grasping policy πg is active. This ensures that a stable
grasp on the object can be reached before moving the object
globally. In the subsequent motion synthesis phase, both the
grasping policy and the motion synthesis module are acting
simultaneously.
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Figure 7. Additional Qualitative Grasps. We provide addi-
tional qualitative examples of grasps. Rows 1-2: Comparison
of the grasps on the training-sets of DexYCB [2] and the gener-
ated grasps from [8]. Rows 3-4: Comparison on the test-sets of
DexYCB [2] and the generated grasps from [8]. As shown, our
method produces more physically plausible grasps, i.e., with less
interpenetration and more realistic contacts than the baselines.

Ablations For the experiment presented in Section 4.5,
we use a subset of YCB [1] objects and train per-object poli-
cies with grasp labels extracted from DexYCB [2]. In par-
ticular, we included one cylindric object (002 master chef
can), one box-shaped object (004 sugarbox) and one com-
plex object (052 extra large clamp) for training and evalua-
tion.

C. Additional Results

All-Object vs. Per-Object Policies We experimented
both with a single policy trained over multiple objects and
single policies trained per object. A comparison on the
DexYCB train/test-split is shown in Table 6. We observe
that the single object policies (Ours PO) can be trained
faster (i.e. ∼3000 vs. 10’000 epochs) and yield a bet-
ter overall performance on the training labels, likely due to
overfitting. On the other hand, the more general all-object
policies (Ours AO) take longer to train, however, the gener-
alization performance on unseen grasp labels is better. The
performance on the training data is lower compared to the
per-object policies. This result indicates that an all-object

Models Success ↑ SimDist [mm/s] ↓ Interpenetration ↓

Tr
ai

n Ours PO 0.81 3.7± 5.8 1.94
Ours AO 0.7 5.8± 7.4 1.75

Te
st Ours PO 0.42 12.4± 10.4 1.19

Ours AO 0.63 8.0± 8.1 1.77

Table 6. Policy Type Comparison. We compare a single policy
trained over multiple objects (Ours AO) and single policies trained
per object (Ours PO). We find that the all-object policies lead to
better generalization performance on the DexYCB dataset [2].

policy helps to prevent the policy from overfitting to single
grasp references.

Additional Qualitative Grasping Results We provide
additional qualitative results in Fig. 7. Specifically, we
include examples on the training sets of DexYCB [2] and
the generated grasps [8]. Moreover, we present additional
examples for both test-sets. As can be observed, our
method can correct for interpenetration and achieve more
realistic grasps.

Quantitative Grasping Result Details We present the
results of the empirical evaluation per object in Tables
7-12. It allows us to analyze the results in more detail. For
the grasp evaluation experiment (Section 4.3), we find that
the main difficulty for our learned policy are thin objects
which are hard to pick up from the surface, e.g., grasping
a pair of scissors from a table. This is indicated by the
relatively low success rates in Tables 7 and 8 for the ”037
scissors” and ”040 large marker” objects. Grasping these
objects requires very fine-grained finger motion or creating
a distinct motion to pick them up, which involves sliding
the object along the surface to overcome static friction. We
find that this issue is mitigated partially in the experiment
with generated grasp labels (Tables 9 and 10), because the
deactivated collisions of the hand with the surface (see
Section B.5) help to achieve stable grasps.
For the baselines, we occasionally observe a configuration
that leads to high success rates despite noisy pose refer-
ences. Specifically, if the interpenetration is large (e.g.
GT-IK in Table 8 for ”021 bleach cleanser” or ”024 bowl”),
the objects can become entangled within the hand mesh and
will therefore not be able to fall down. Thus, the success
rate metric should always be interpreted in combination
with the other metrics.
For the experiment with HO3D images, we find that the
performance of our method is equally good across all
objects and conditions (Tables 11 and 12). This is likely
due to the high-quality reference grasps that are produced
by [5]. While our approach can correct interpenetration
and noisy poses to some degree, it is conditioned on the
reference pose, and hence performs best when provided



with grasp targets that roughly approximate a real human
(i.e., physically plausible) grasp on the object. We conclude
that especially for generalization to unseen objects, good
grasp references are important.

Generalization to Unseen Object Details In Table 13,
we report the detailed results of the generalization experi-
ment. We observe a large variance across the different ob-
ject sets. For example, the success rate of our method on
test set 1, which comprises easier geometries, reaches up to
0.83. On the other hand, our method only achieves a 0.33
success rate on the test set 6, which contains the complex
objects ”037 scissors” and ”040 large marker”. Generally,
we find that our method is able to outperform the static base-
lines across the different test sets. As a future extension,
it would be interesting to scale the method to even larger
datasets. Such ambitions are supported by different works
for dexterous robotic manipulation tasks [3, 6], which have
recently demonstrated the ability of large scale training with
regards to object types in order to achieve generalization
across objects.

D. Societal Impact

While the dynamic grasps generated by our method are
not yet indistinguishable from real ones, we can extrapolate
to a more mature version of this work, opening-up many po-
tential applications, e.g., in AR/VR, HCI or robotics. These
applications may lead to negative societal impact, where
so-called deep-fakes are the obvious nefarious use of such
methods. However, it is also possible that due to the compu-
tational complexity and resulting real-world cost of imple-
menting even positive applications, there may be negative
implications for already underprivileged populations. For
example, a service robot that may learn to cooperate with
humans may not be affordable for many that have need for
such advanced care technologies.

In going forward with the development of technologies
related to this paper, one must carefully balance the poten-
tial positive uses and the undesired side-effects. Since we
have no control over whether such technologies will be de-
veloped at all, by whom and for which purposes, we ar-
gue that openly discussing the technical details, properties
and limitations is one way to ensure that a) such technolo-
gies are well understood and therefore counter measures
to nefarious use would be easier to implement and b) that
as many individuals as possible can have access to related
technologies. To this end we will release all source code for
research purposes.

E. Glossary

We include a glossary in Tables 14 and 15 to provide an
overview of the many notations used in this paper.
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GT+PD GT+IK Ours

Object SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3]

002 master chef can 18.0 ± 9.8 0.19 5.68 17.2 ± 10.0 0.20 12.96 1.5 ± 5.7 0.90 1.54
003 cracker box 18.2 ± 10.1 0.16 3.62 9.2 ± 10.7 0.47 9.16 8.4 ± 12.3 0.68 2.48
004 sugar box 15.6 ± 11.2 0.32 5.52 8.7 ± 9.7 0.50 11.64 0.1 ± 0.0 1.00 3.28
005 tomato soup can 12.1 ± 10.8 0.28 4.34 12.2 ± 10.1 0.33 10.72 1.4 ± 5.5 0.90 2.51
006 mustard bottle 4.4 ± 7.8 0.64 9.51 1.1 ± 1.5 0.76 16.50 3.2 ± 8.5 0.88 2.20
007 tuna fish can 17.4 ± 9.4 0.14 2.52 16.6 ± 9.6 0.19 5.26 1.8 ± 4.6 0.71 1.13
008 pudding box 15.1 ± 9.7 0.21 3.91 13.2 ± 11.2 0.39 7.19 2.4 ± 5.9 0.78 0.98
009 gelatin box 18.9 ± 9.4 0.15 2.23 18.3 ± 9.3 0.20 4.61 3.7 ± 8.6 0.85 0.98
010 potted meat can 13.6 ± 10.3 0.30 4.14 11.4 ± 10.0 0.39 8.81 1.8 ± 6.0 0.89 0.64
011 banana 16.7 ± 8.6 0.09 3.27 15.9 ± 10.0 0.20 4.97 5.9 ± 9.6 0.47 0.73
019 pitcher base 11.0 ± 11.1 0.40 7.47 11.2 ± 11.2 0.37 17.01 6.9 ± 10.8 0.68 3.16
021 bleach cleanser 5.1 ± 8.5 0.61 8.25 3.8 ± 7.0 0.61 15.64 0.2 ± 0.4 0.94 3.08
024 bowl 10.2 ± 10.7 0.41 3.15 7.3 ± 9.3 0.62 9.83 7.5 ± 10.7 0.62 2.08
025 mug 12.3 ± 10.3 0.35 3.24 9.7 ± 10.6 0.53 6.56 10.2 ± 12.2 0.59 1.61
035 power drill 0.8 ± 1.8 0.83 10.68 5.3 ± 9.0 0.65 15.76 6.4 ± 10.7 0.59 1.64
036 wood block 13.4 ± 11.6 0.42 7.31 11.3 ± 11.5 0.50 13.36 0.1 ± 0.0 1.00 3.56
037 scissors 10.6 ± 9.9 0.35 1.72 13.5 ± 9.4 0.22 3.03 19.3 ± 10.0 0.11 0.35
040 large marker 19.8 ± 5.8 0.04 1.38 21.5 ± 5.9 0.05 2.81 20.9 ± 7.3 0.05 0.09
052 extra large clamp 15.0 ± 9.9 0.28 1.97 12.3 ± 11.0 0.44 3.50 10.4 ± 11.7 0.44 1.70
061 foam brick 18.9 ± 7.3 0.12 1.93 17.2 ± 10.5 0.26 5.23 3.5 ± 8.1 0.84 1.30

Average 13.4 ± 9.2 0.31 4.59 11.8 ± 9.4 0.39 9.23 5.8 ± 7.4 0.70 1.75

Table 7. Detailed results for the DexYCB train set.

GT+PD GT+IK Ours

Object SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3]

002 master chef can 20.4 ± 9.3 0.17 4.17 19.2 ± 8.6 0.17 10.73 0.6 ± 1.2 0.83 1.67
003 cracker box 14.7 ± 11.1 0.33 5.21 9.0 ± 11.5 0.67 13.10 8.9 ± 12.4 0.67 4.06
004 sugar box 14.1 ± 12.1 0.43 6.75 3.9 ± 8.5 0.86 16.04 3.9 ± 9.3 0.86 3.02
005 tomato soup can 7.6 ± 9.0 0.50 3.25 8.2 ± 8.4 0.25 7.56 14.4 ± 11.4 0.25 1.03
006 mustard bottle 9.5 ± 9.9 0.50 6.77 6.7 ± 9.9 0.63 13.19 7.0 ± 12.0 0.75 2.13
007 tuna fish can 16.4 ± 9.4 0.14 1.55 16.3 ± 8.5 0.14 3.55 0.1 ± 0.0 1.00 1.50
008 pudding box 18.5 ± 8.2 0.17 2.08 12.7 ± 10.5 0.33 4.19 4.2 ± 9.2 0.83 0.92
009 gelatin box 21.6 ± 9.7 0.14 2.00 15.3 ± 13.3 0.29 4.59 3.8 ± 8.5 0.71 0.86
010 potted meat can 9.9 ± 10.2 0.40 2.60 10.8 ± 10.8 0.40 7.00 0.1 ± 0.1 1.00 1.00
011 banana 13.8 ± 9.9 0.14 2.79 13.0 ± 10.8 0.29 4.36 10.8 ± 12.0 0.43 0.50
019 pitcher base 12.6 ± 12.5 0.50 7.83 13.1 ± 12.7 0.50 25.54 6.2 ± 9.1 0.50 3.08
021 bleach cleanser 5.8 ± 8.3 0.40 10.43 5.1 ± 9.3 0.80 15.40 10.2 ± 12.3 0.60 2.10
024 bowl 9.3 ± 11.1 0.50 5.83 0.3 ± 0.3 1.00 13.44 12.0 ± 11.9 0.50 1.56
025 mug 7.4 ± 9.2 0.50 3.00 0.5 ± 0.5 1.00 9.13 4.1 ± 9.0 0.83 1.33
035 power drill 0.2 ± 0.1 1.00 8.25 0.5 ± 0.4 0.83 15.02 5.6 ± 10.4 0.67 2.71
036 wood block 20.6 ± 9.1 0.17 4.88 12.9 ± 12.4 0.50 11.73 0.2 ± 0.1 1.00 4.17
037 scissors 8.1 ± 9.9 0.50 4.44 6.4 ± 8.6 0.50 6.55 19.0 ± 8.1 0.13 0.58
040 large marker 18.7 ± 3.2 0.00 1.43 13.5 ± 8.7 0.20 3.58 24.2 ± 0.1 0.00 0.00
052 extra large clamp 16.2 ± 8.9 0.14 2.48 5.1 ± 7.7 0.43 5.21 14.0 ± 12.1 0.43 1.88
061 foam brick 16.0 ± 10.8 0.29 2.43 10.0 ± 8.3 0.13 4.86 10.5 ± 12.0 0.57 1.30

Average 13.1 ± 9.1 0.35 4.41 9.1 ± 8.5 0.50 9.74 8.0 ± 8.1 0.63 1.77

Table 8. Detailed results for the DexYCB test set.

Jiang et. al [8]+PD Jiang et. al [8]+IK Ours

Object SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3]

002 master chef can 24.0 ± 1.5 0.00 6.39 24.0 ± 1.6 0.00 16.19 2.6 ± 7.5 0.90 2.70
003 cracker box* 22.8 ± 2.4 0.00 6.97 22.8 ± 2.5 0.00 8.18 6.0 ± 10.3 0.70 5.80
004 sugar box* 14.7 ± 8.5 0.10 5.60 15.2 ± 8.7 0.10 10.45 1.4 ± 5.3 0.95 4.03
005 tomato soup can 14.8 ± 9.1 0.10 5.62 14.6 ± 9.0 0.10 11.51 3.8 ± 8.7 0.85 5.76
006 mustard bottle* 5.6 ± 7.2 0.30 5.66 5.2 ± 7.3 0.50 10.61 0.8 ± 2.8 0.95 5.14
007 tuna fish can 20.9 ± 1.7 0.00 2.88 21.4 ± 1.7 0.00 4.84 0.3 ± 0.5 0.90 2.03
008 pudding box 11.0 ± 10.3 0.10 4.92 10.9 ± 10.2 0.10 7.88 6.2 ± 10.1 0.70 0.91
009 gelatin box 14.1 ± 8.7 0.10 3.89 14.3 ± 9.2 0.10 8.38 1.7 ± 5.9 0.90 1.44
010 potted meat can* 20.4 ± 2.9 0.00 3.96 20.7 ± 2.8 0.00 6.89 7.1 ± 11.0 0.65 0.46
011 banana* 4.4 ± 6.1 0.30 3.52 6.1 ± 8.0 0.40 2.33 7.0 ± 9.4 0.45 3.18
019 pitcher base* 6.4 ± 8.4 0.50 8.11 7.1 ± 8.0 0.30 13.64 6.4 ± 10.1 0.65 1.56
021 bleach cleanser* 0.8 ± 1.9 0.90 5.76 0.5 ± 0.6 0.80 6.82 2.1 ± 6.4 0.90 4.89
024 bowl 5.5 ± 8.0 0.70 4.93 5.7 ± 8.3 0.70 3.24 5.2 ± 7.7 0.40 1.78
025 mug* 7.9 ± 9.4 0.50 4.32 8.2 ± 9.5 0.40 2.19 1.3 ± 5.2 0.95 4.78
035 power drill* 12.3 ± 12.0 0.20 5.84 12.1 ± 12.1 0.20 8.40 11.4 ± 11.5 0.20 1.27
036 wood block 22.0 ± 4.6 0.00 7.28 22.2 ± 4.2 0.00 5.06 2.6 ± 7.5 0.90 2.99
037 scissors* 5.0 ± 7.5 0.30 2.37 8.2 ± 8.5 0.30 1.50 0.7 ± 1.4 0.85 2.18
040 large marker 10.3 ± 9.6 0.40 1.86 10.1 ± 9.7 0.40 3.41 7.2 ± 9.6 0.55 0.92
052 extra large clamp 3.6 ± 5.9 0.40 4.97 3.6 ± 6.0 0.40 8.21 3.4 ± 7.2 0.65 3.37
061 foam brick 20.9 ± 1.8 0.00 3.46 21.3 ± 2.0 0.00 6.56 1.3 ± 5.1 0.95 1.66

Average 12.4 ± 6.4 0.25 4.92 12.7 ± 6.5 0.24 7.31 3.9 ± 7.2 0.75 2.84

Table 9. Detailed results for the DexYCB and HO3D train set with grasp references from a static grasp synthesis method [8]. HO3D
objects are marked by *.



Jiang et. al [8]+PD Jiang et. al [8]+IK Ours

Object SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3]

002 master chef can 24.0 ± 1.6 0.00 7.54 23.3 ± 1.3 0.00 7.03 5.3 ± 10.5 0.80 1.88
003 cracker box* 22.8 ± 2.5 0.00 6.73 20.3 ± 5.4 0.00 7.74 5.4 ± 10.6 0.80 7.06
004 sugar box* 15.2 ± 8.7 0.10 5.18 15.0 ± 8.4 0.00 13.85 0.2 ± 0.2 1.00 3.48
005 tomato soup can 14.6 ± 9.0 0.10 5.29 15.0 ± 9.0 0.00 10.75 0.1 ± 0.1 1.00 5.86
006 mustard bottle* 5.2 ± 7.3 0.50 5.19 7.6 ± 7.6 0.10 14.29 0.4 ± 0.9 0.90 6.23
007 tuna fish can 21.4 ± 1.7 0.00 2.61 19.8 ± 6.7 0.10 5.25 2.5 ± 7.0 0.90 1.51
008 pudding box 10.9 ± 10.2 0.10 5.51 7.0 ± 9.1 0.30 9.38 7.3 ± 10.7 0.60 0.46
009 gelatin box 14.3 ± 9.2 0.10 3.49 13.0 ± 10.6 0.40 6.91 0.8 ± 1.6 0.80 1.83
010 potted meat can* 20.7 ± 2.8 0.00 4.74 21.0 ± 2.6 0.00 8.70 7.6 ± 10.4 0.40 0.60
011 banana* 6.1 ± 8.0 0.40 3.38 8.1 ± 8.9 0.50 3.16 4.8 ± 9.1 0.80 2.09
019 pitcher base* 7.1 ± 8.0 0.30 8.50 6.3 ± 8.1 0.40 0.00 12.3 ± 11.9 0.40 0.98
021 bleach cleanser* 0.5 ± 0.6 0.80 6.50 9.9 ± 9.1 0.30 7.75 0.2 ± 0.2 1.00 5.69
024 bowl 5.7 ± 8.3 0.70 4.51 2.5 ± 5.1 0.80 2.83 3.4 ± 7.0 0.80 2.18
025 mug* 8.2 ± 9.5 0.40 5.94 3.7 ± 6.3 0.60 2.41 0.1 ± 0.0 1.00 4.64
035 power drill* 12.1 ± 12.1 0.20 4.91 14.7 ± 12.0 0.30 5.91 10.2 ± 11.4 0.20 1.49
036 wood block 22.2 ± 4.2 0.00 6.65 24.0 ± 2.0 0.00 1.94 10.7 ± 12.4 0.50 1.84
037 scissors* 8.2 ± 8.5 0.30 2.94 5.1 ± 7.1 0.50 1.26 7.8 ± 11.3 0.60 1.74
040 large marker 10.1 ± 9.7 0.40 1.65 6.8 ± 9.9 0.60 4.01 7.3 ± 10.4 0.50 1.94
052 extra large clamp 3.6 ± 6.0 0.40 4.09 3.1 ± 6.1 0.60 7.46 5.1 ± 8.4 0.60 3.22
061 foam brick 21.3 ± 2.0 0.00 3.51 20.9 ± 1.3 0.00 7.81 0.1 ± 0.0 1.00 1.46

Average 12.7 ± 6.5 0.24 4.94 12.4 ± 6.8 0.28 6.42 4.6 ± 6.7 0.73 2.81

Table 10. Detailed results for the DexYCB and HO3D test set with grasp references from a static grasp synthesis method [8]. HO3D
objects are marked by *.

Grady et. al [5]+PD Ours

Object SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3]

003 cracker box 2.5 ± 6.7 0.85 14.33 0.3 ± 0.1 1.00 3.18
004 sugar box 16.3 ± 9.3 0.05 17.04 2.9 ± 6.6 0.70 2.40
006 mustard bottle 9.1 ± 9.7 0.40 26.46 0.3 ± 0.4 0.95 2.89
010 potted meat can 3.9 ± 8.5 0.70 15.42 2.2 ± 5.9 0.90 0.78
011 banana 10.0 ± 9.9 0.35 13.80 1.7 ± 4.9 0.80 1.98
021 bleach cleanser 0.9 ± 3.3 0.95 18.84 0.3 ± 0.1 1.00 2.86
025 mug 2.7 ± 6.7 0.80 5.49 2.0 ± 5.4 0.85 4.74
035 power drill 0.2 ± 0.4 0.95 16.09 0.3 ± 0.2 1.00 2.56
037 scissors 0.1 ± 0.1 1.00 6.96 3.0 ± 7.3 0.75 2.60

Average 5.1 ± 6.1 0.67 14.94 1.4 ± 3.4 0.88 2.67

Table 11. Detailed results for the train set with ContactOpt [5] on HO3D images.

Grady et. al [5]+PD Ours

Object SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3]

003 cracker box 6.7 ± 9.7 0.60 13.41 0.26 ± 0.1 1.00 2.14
004 sugar box 23.6 ± 1.5 0.00 17.71 0.95 ± 2.2 0.90 2.53
006 mustard bottle 4.6 ± 7.6 0.60 25.16 0.64 ± 0.8 0.80 2.46
010 potted meat can 1.9 ± 5.5 0.90 14.08 0.63 ± 1.3 0.90 0.38
011 banana 12.0 ± 10.4 0.20 13.38 0.61 ± 0.5 0.80 1.91
021 bleach cleanser 0.9 ± 2.4 0.90 18.23 2.86 ± 7.6 0.90 2.25
025 mug 6.4 ± 8.4 0.50 4.80 5.05 ± 9.7 0.80 4.16
035 power drill 0.1 ± 0.1 1.00 14.84 0.71 ± 0.6 0.60 1.68
037 scissors 2.7 ± 6.9 0.70 4.34 5.30 ± 9.3 0.60 1.21

Average 6.5 ± 5.8 0.60 13.99 1.9 ± 3.57 0.81 2.08

Table 12. Detailed results for the test set with ContactOpt [5] on HO3D images.



GT+PD GT+IK Ours

Object SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3] SimDist [mm/s] ↓ Success ↑ Interp. [cm3]

Te
st

se
t1 004 sugar box 15.2 ± 11.4 0.35 5.86 7.4 ± 9.4 0.60 12.87 2.3 ± 7.2 0.92 3.35

005 tomato soup can 11.4 ± 10.5 0.32 4.17 11.5 ± 9.8 0.32 10.21 5.7 ± 10.3 0.76 1.56
006 mustard bottle 6.0 ± 8.5 0.60 8.64 2.9 ± 4.2 0.72 15.44 2.1 ± 5.7 0.80 1.87

Average 10.9 ± 10.1 0.42 6.22 7.3 ± 7.8 0.55 12.84 3.3 ± 7.7 0.83 2.26

Te
st

se
t2 061 foam brick 18.1 ± 8.3 0.16 2.06 15.3 ± 9.9 0.23 5.13 9.6 ± 12.0 0.62 0.55

010 potted meat can 12.8 ± 10.2 0.33 3.80 11.3 ± 10.2 0.39 8.42 5.1 ± 9.3 0.61 1.36
052 extra large clamp 15.4 ± 9.6 0.24 2.11 10.3 ± 10.1 0.44 3.98 14.8 ± 11.5 0.16 1.53

Average 15.4 ± 9.4 0.24 2.66 12.3 ± 10.1 0.35 5.84 9.8 ± 10.9 0.46 1.15

Te
st

se
t3 003 cracker box 17.4 ± 10.3 0.20 4.00 9.1 ± 10.9 0.52 10.11 12.9 ± 13.3 0.52 2.86

007 tuna fish can 17.1 ± 9.4 0.14 2.28 16.5 ± 9.3 0.18 4.83 5.4 ± 10.2 0.79 0.88
011 banana 15.8 ± 9.0 0.11 3.11 14.9 ± 10.2 0.23 4.78 7.2 ± 10.3 0.50 1.24

Average 16.8 ± 9.6 0.15 3.13 13.5 ± 10.2 0.31 6.57 8.5 ± 11.3 0.60 1.66

Te
st

se
t4 002 master chef can 18.5 ± 9.7 0.19 5.33 17.6 ± 9.7 0.19 12.45 6.6 ± 11.1 0.65 1.21

036 wood block 15.1 ± 11.1 0.36 6.75 11.7 ± 11.7 0.50 12.98 3.4 ± 8.8 0.85 3.31
052 extra large clamp 15.4 ± 9.6 0.24 2.11 10.3 ± 10.1 0.44 3.98 15.1 ± 11.3 0.28 2.26

Average 16.3 ± 10.1 0.26 4.73 13.2 ± 10.5 0.38 9.80 8.4 ± 10.4 0.59 2.26

Te
st

se
t5 008 pudding box 16.0 ± 9.4 0.20 3.45 13.0 ± 11.0 0.38 6.44 3.5 ± 8.4 0.83 0.90

019 pitcher base 11.4 ± 11.4 0.42 7.56 11.6 ± 11.5 0.40 19.06 11.3 ± 11.5 0.40 3.52
035 power drill 0.6 ± 1.3 0.87 10.04 4.0 ± 6.8 0.70 15.57 11.0 ± 12.8 0.43 1.63

Average 9.3 ± 7.4 0.50 7.02 9.6 ± 9.8 0.49 13.69 8.6 ± 10.9 0.56 2.02

Te
st

se
t6 005 tomato soup can 11.4 ± 10.5 0.32 4.17 11.5 ± 9.8 0.32 10.21 9.1 ± 12.0 0.60 2.10

037 scissors 9.9 ± 9.9 0.39 2.55 11.3 ± 9.2 0.31 4.11 18.3 ± 10.4 0.19 0.71
040 large marker 19.6 ± 5.3 0.03 1.38 20.0 ± 6.4 0.07 2.95 18.2 ± 10.2 0.19 0.51

Average 13.6 ± 8.6 0.25 2.70 14.3 ± 8.4 0.23 5.76 15.2 ± 10.9 0.33 1.11

Table 13. Generalization to Unseen Objects. We evaluate generalization to unseen objects and compare our model with the baselines.
We create six different test sets of three objects, which we leave out during training. We report the detailed results per test set in this table.



Notation Meaning

s state
a action
πg grasping policy
πm motion synthesis policy
D static grasp label
x 3D joint position
q joint angles
T 6D pose

Th 6D global hand pose
Ṫh 6D global hand velocities
To 6D object pose
Ṫo 6D object velocities
Tg 6D goal object pose
qh hand joint angles
q̇h hand joint angular velocities
Th 6D global hand pose in grasp label
To 6D global object pose in grasp label
qh 3D hand pose in grasp label
gc target contacts
x 3D target joint position
f contact forces

τ joint torques
kp PD-controller parameter
kd PD-controller parameter
qref reference joint angles
qb bias joint angle term

φ(·) feature extractor
·̃ transformation to wrist reference frame
T̃o 6D object pose in wrist reference frame
˙̃
To 6D object velocities in wrist reference frame
˙̃
Th 6D global hand velocities in wrist reference frame
x̃z vertical distance to surface where object rests

Table 14. Glossary (part 1) for the notation used in this paper.

Notation Meaning

G goals
g̃x 3D distance between current and target joint positions
g̃q angular distance between current and target joint/wrist rotations
gc contact vector
go,x 3D distance between current and target object position
go,q angular distance between current and target object rotation

r total reward for grasping
rx position reward
wx position reward weight
rq pose reward
wq pose reward weight
rc contact reward
wc contact reward weight
λ contact reward coefficient
mo object’s mass
rreg regularizing reward term
wreg,h regularizing reward term hand weight
wreg,o regularizing reward term object weight

rm total reward motion synthesis
rm,x position reward motion synthesis
rm,q pose reward motion synthesis
αx position reward weight motion synthesis
αq pose reward weight motion synthesis

ψ(·) feature extractor motion synthesis
T̂h estimated 6D target hand pose
Tpd 6D pose input to the PD-controller for motion synthesis

vh hand mesh
vo object mesh

Table 15. Glossary (part 2) for the notation used in this paper.


