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1. List of Content

This supplementary material includes the following con-
tents:

* Measure of GFLOPs.

* Robustness to trimap precision.

¢ Details on S A strategies.

 Ablation study and additional verification on S.A.

* More visual results on real-world images and bench-
marks, including Composition-1k [10], Distinction-
646 [7], SIMD,,,,- [9], AIM-500 [4].

* Results on the alphamatting.com [8] benchmark.

¢ Failure cases.

2. Measure of GFLOPs

We measure GFLOPs of SIM [9], FBA [2] and our
method. Results are reported in Table.1.

Method | GFLOPs
SIM [9] 48.30
FBA [2] 30.47
M3? 16.62
M7} 22.22
Table 1. GFLOPs measured on a 224 x 224 input.

3. Robustness to Trimap Precision

We conduct evaluations on the AIM-500 with different
trimap dilation distances. Methods in comparison are In-
dexNet [6], GCA [5], A%U [1], SIM [9], FBA [2] and our
M7%. In detail, we generate 4 sets of trimaps using random
dilation distances within [11, 20], [21, 30], [31, 40], [41, 50],
respectively. We denote them as 20, 30, 40, 50 accordingly
in Fig. 1. As shown in Fig. 1, our method is obviously more
robust to varying trimap precision on all the metrics.
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4. Details on the Strong Data Augmentation
Strategies

To supplement the content in the main text, we further
detail the SA strategies in our experiments here.

If AF or AFB is applied alone, we set the possibility as
0.5 and keep the ground truths unmodified; if they are com-
bined, possibility of each is changed to 0.25; further, if AC
is added on, we set its possibility as 0.1 when AF and AFB
do not happen.

Specifically, in AF and AFB, linear pixel-wise augmen-
tation, nonlinear pixel-wise augmentation and region-wise
augmentation happen with a probability of 0.8, 0.1 and 0.1,
respectively. In AC, linear pixel-wise augmentation, nonlin-
ear pixel-wise augmentation and region-wise augmentation
happen with a probability of 0.2, 0.4 and 0.4, respectively.
All the augmentations are randomly selected from the op-
tions list in the main text during each operation.

5. Ablation study and extensive verification on
Strong Data Augmentation

We report ablation study results on SA on the
Composition-1k in Table. 2. In consistent with results in
the main text, our SA produces comparable results on the
synthetic benchmarks.

Method SAD MSE Grad Conn
N3 2586 0.0046 9.69 21.16
N3+AF 2586 0.0045 9.82 21.27
N3+AFB 26.21 0.0048 991 2143
N3+AF+AFB 26.55 0.0050 10.45 21.93

N3+AF+AFB+AC | 2646 0.0049 998 21.72
Table 2. Ablation on SA on the Composition-1k.

We also show additional verification of S.A on the
A2U [1] on AIM-500 in Table. 3.

6. More Visual Results

Here we show more visual results. The visualized meth-
ods include IndexNet [6], CA [3], GCA [5], A%U [1],
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Figure 1. Robustness to trimap precision on the AIM-500.
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Method SAD MSE Grad Conn
AU [1] 30.38  0.0307 22.60 30.69
A?U+AF+AFB+AC | 19.55 0.0165 15.02 19.10

Table 3. Results of S.A on the AU [1] on AIM-500.

SIM [9], FBA [2] and our M7%.

Visual results on real-world images are present in Fig. 2
and 3, where Fig. 3 further shows results on coarse trimaps.
Our method is more robust in these real-world test cases
with coarse-to-fine trimaps.

Visual results on the AIM-500 [4] are exhibited in Fig. 4.
Our method achieves better results on structures such as
leaves and net.

Visual results on the Composition-1k [10], Distinction-
646 [7] and SIMD,,,, [9] are displayed in Fig.5, 6 and 7,
respectively. The top-performing methods in comparison
all demonstrate appealing results on these synthetic bench-

marks, but our method still performs better at background
suppression (e.g. Fig. 7) and foreground structure modeling
(e.g. Fig. 5 and 6).

7. Results on the alphamatting.com

We report results of M7* on the alphamatting.com on-
line benchmark in Table. 4. The methods in comparison
are SIM [9], A2U [1], GCA [5], CA [3], IndexNet [6].
There are only 8 test images in this online benchmark. It
worth noting that, SIM is trained with the SIMD training
set, which has 736 foregrounds (including 360 foregrounds
from DIM) in the training set, while DIM only has 431 fore-
grounds in the training set; GCA and A%U retrain their mod-
els with the whole DIM dataset (including both training set
and test set, 481 foregrounds in total) for this benchmark.
Our result is directly reported from M7+ trained with the
DIM training set without using extra data or fine-tuning the
model, but it still achieves top-performing ranks.
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Figure 2. Visual results on real-world images. Best viewed by zooming in.
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Figure 3. Visual results on real-world images with coarse trimaps.
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Figure 4. Visual results on the AIM-500.

Method SAD MSE Grad Conn

overall S L U overall S L U overall S L U overall S L U
Ours-M7% 6.7 59 5.8 8.5 6.8 5.9 5.5 9.1 4.7 4.8 3.8 5.5 124 164 137 7.6
SIM [9] 6.5 7 5.8 6.6 7 8.1 5.5 7.4 6.9 8.5 59 6.5 10 10 8.9 11.3
A%U [1] 13.3 12.3 10.6 17 15.5 13 12.6 20.8 12.3 11.3 9.4 16.1 27.3 30.1 28 243
GCA [5] 14.5 15.3 12.4 16 15.3 15.1 14.5 16.4 13.7 13.6 12.5 15 22.5 26 20.1 21.4
CA [3] 229 269 209 21 17.6 20.9 18.6 133 14.6 15.8 15.5 12.6 259 28 24.6 25
IndexNet [6] 19.4 21.5 18.1 18.6 229 253 215 22 18.6 17.3 173 214 255 24.1 26.4 26

Table 4. Results on the alphamatting.com online benchmark.



Figure 5. Visual results on the Composition-1k. Best viewed by zooming in.
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Figure 6. Visual results on the Distinction-646. Best viewed by zooming in.
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Figure 7. Visual results on the SIMD,,,-. Best viewed by zooming in.



8. Failure Cases

Failure examples are visualized in Fig. 8. Our method
may fail if there is strong light in the background or there
are tiny objects overlapping with the foreground object. A
possible solution is to learn the structure of the foreground
objects. We leave it as future work.

Figure 8. Failure cases.

References

(1]

(2]

(3]

(4]

(5]

Yutong Dai, Hao Lu, and Chunhua Shen. Learning affinity-
aware upsampling for deep image matting. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 6841-6850, 2021. 1, 2,
5

Marco Forte and Francois Pitié. f, b, alpha matting. CoRR,
2020. 1,2

Qiqi Hou and Feng Liu. Context-aware image matting for
simultaneous foreground and alpha estimation. In Int. Conf.
Comput. Vis., pages 4130-4139,2019. 1,2, 5

Jizhizi Li, Jing Zhang, and Dacheng Tao. Deep automatic
natural image matting. Int. Joint Conf. Artificial Intell., 2021.
1,2

Yaoyi Li and Hongtao Lu. Natural image matting via guided
contextual attention. In Proc. AAAI Conf. Artificial Intell.,
volume 34, pages 11450-11457, 2020. 1, 2, 5

(6]

(7]

(8]

(9]

[10]

Hao Lu, Yutong Dai, Chunhua Shen, and Songcen Xu. In-
dices matter: Learning to index for deep image matting. In
Int. Conf. Comput. Vis., pages 3266-3275,2019. 1, 2, 5

Yu Qiao, Yuhao Liu, Xin Yang, Dongsheng Zhou, Min-
gliang Xu, Qiang Zhang, and Xiaopeng Wei. Attention-
guided hierarchical structure aggregation for image matting.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 13676—
13685, 2020. 1,2

Christoph Rhemann, Carsten Rother, Jue Wang, Margrit
Gelautz, Pushmeet Kohli, and Pamela Rott. A perceptu-
ally motivated online benchmark for image matting. In /EEE
Conf. Comput. Vis. Pattern Recog., pages 1826-1833. IEEE,
2009. 1

Yanan Sun, Chi-Keung Tang, and Yu-Wing Tai. Semantic
image matting. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 11120-11129, 2021. 1,2, 5

Ning Xu, Brian Price, Scott Cohen, and Thomas Huang.
Deep image matting. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 2970-2979, 2017. 1,2



