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In this supplementary material, we present more details on our reverse distillation method for anomaly detection.Specifically,
we describe the architectures of our proposed Reverse Distillation, especially the student decoder design, in Appendix A .
Appendix B elaborates the implementation and results for one-class novelty detection. More visualizations on MVTec [2]
for anomaly detection and localization are provided in Appendix C. Finally, We discuss future work that may alleviate the
limitations of current work in Appendix D. Our code is available at https://github.com/hq-deng/RD4AD.

A. Model Architectures
Our reverse distillation framework consists of a teacher encoder and a student decoder. We specify our implementation

details on the reverse distillation in experiments in this section.
Teacher Encoder: In our experiments, we take ResNet18 [3], ResNet50 [3] and WideResNet50 [13] as our backbones,

respectively. We use the first, second, and third residual blocks in the backbone as the architecture of the teacher encoder.
We use the pre-trained model from Pytorch1 as the knowledge source of the teacher encoder.

Student Decoder: The architecture of the student decoder is symmetrical but reversed compared to the teacher encoder.
For example, a down-sampling layer in the teacher encoder will be replaced by an up-sampling layer in the student decoder.
In our experiments, ResNet is used as the teacher encoder. To implement the corresponding student decoder, we use the
deconvolutional layer [14] with a kernel of 2 and stride of 2 as the up-sampling layer. For each decoder block, the up-
sampling is performed by the first layers. Other components in the original residual layers [3,13] are untouched. The detailed
architectures are shown in Tab. 1.

B. Details for One-Class Novelty Detection
Following previous works on one-class novelty detection, we train the model with samples from a single class and detect

out-of-distribution samples from other classes. All images in the MNIST [8], F-MNIST [12] and CIFAR-10 [6] datasets are
in their original scale, which are 28× 28, 28× 28, and 32× 32, respectively. We take ResNet18 [3] as the backbone of the
teacher encoder. The student decoder is implemented as described in Tab. 1. We train 200 epochs with a batch size of 16.
The model is optimized by Adam [5] optimizer with learning rate of 0.001.

Due to page limitation, we only compare the quantitative averages of once-class novelty detection in the main paper.Here,
Tab. 2 presents the detailed numerical results of novelty detection with training on each class of samples.

C. Visualizations of Anomaly Detection and Localization on MVTec
Positive samples: We visualize the normalized anomaly score plot as a heat map. Figs. 1 to 5 show the various anomaly

localization results for the texture images. Figs. 6 to 15 show the various anomaly localization results for the object images.
Negative samples: We also enumerate all the negative samples in this document. Negative samples are those in which the

abnormal region is not significantly distinguished from the normal region. We show all the negative samples of the textures
in Fig. 16. The negative samples of the objects are shown in Fig. 17. Note that since the heat maps are normalized, the
occurrence of high heats in non-abnormal regions does not mean that they are predicted to be abnormal. Negative samples
occur because abnormal areas are not significantly detected or are influenced by random factors, such as spots on the pill.
All the types of defects present in the negative samples also have positive samples that are successfully detected. We discuss
further improvement of future work in Appendix D.

1https://pytorch.org/

https://github.com/hq-deng/RD4AD


block name output size De-ResNet-18 De-ResNet-50 De-WideResNet-50

deconv 3 16× 16

[
2× 2, 256

3× 3, 256

]
[

2× 2, 256

3× 3, 256

]
 1× 1, 256

2× 2, 256

1× 1, 1024

× 1

 1× 1, 256

3× 3, 256

1× 1, 1024

× 5

 1× 1, 256× 2

2× 2, 256× 2

1× 1, 1024× 2

× 1

 1× 1, 256× 2

2× 2, 256× 2

1× 1, 1024× 2

× 5

deconv 2 32× 32

[
2× 2, 128

3× 3, 128

]
[

2× 2, 128

3× 3, 128

]
 1× 1, 128

2× 2, 128

1× 1, 512

× 1

 1× 1, 128

3× 3, 128

1× 1, 512

× 3

 1× 1, 128× 2

2× 2, 128× 2

1× 1, 512× 2

× 1

 1× 1, 128× 2

2× 2, 128× 2

1× 1, 512× 2

× 3

deconv 1 64× 64

[
2× 2, 64

3× 3, 64

]
[

2× 2, 64

3× 3, 64

]
 1× 1, 64

2× 2, 64

1× 1, 256

× 1

 1× 1, 64

3× 3, 64

1× 1, 256

× 2

 1× 1, 64× 2

2× 2, 64× 2

1× 1, 256× 2

× 1

 1× 1, 64× 2

2× 2, 64× 2

1× 1, 256× 2

× 2

Table 1. Architectures for student decoder on MVTec [2].

Dataset MNIST F-MNIST CIFAR-10
Method LSA OCGAN HRN Ours LSA OCGAN HRN Ours LSA OCGAN HRN Ours

0 99.3 99.8 99.5 99.9 91.6 85.5 92.7 93.4 73.5 75.7 77.3 89.3
1 99.9 99.9 99.9 99.9 98.3 93.4 98.5 99.6 58.0 53.1 69.9 91.7
2 95.9 94.2 96.5 98.9 87.8 85.0 88.5 92.5 69.0 64.0 60.6 78.1
3 96.6 96.3 97.4 98.9 92.3 88.1 93.1 95.5 54.2 62.0 64.4 71.1
4 95.6 97.5 97.2 98.1 89.7 85.8 92.1 93.9 76.1 72.3 71.5 86.5
5 96.5 98.0 97.2 99.1 90.7 88.5 91.3 96.5 54.6 62.0 67.4 83.9
6 99.4 99.1 99.2 99.9 84.1 77.5 79.8 83.0 75.1 72.3 77.4 91.6
7 98.0 98.1 97.6 99.1 97.7 93.9 99.0 99.5 53.5 57.5 64.9 90.2
8 95.3 93.9 94.3 99.0 91.0 82.7 94.6 97.3 71.7 82.0 82.5 92.4
9 98.1 98.1 97.1 99.5 98.4 97.8 98.8 98.7 54.8 55.4 77.3 90.1

Average 97.5 97.5 97.6 99.2 92.2 87.8 92.8 95.0 64.1 65.7 71.3 86.5

Table 2. AUROC(%) results for One-Class Novelty Detection compared with LSA [1], OCGAN [10], and HRN [4].

D. Future Work
We used models pre-trained on ImageNet [7] as teacher encoders in our experiments. We believe that studying a self-

supervised trained model is a feasible direction. Since the parameters of the teacher encoder need to be fixed, fine-tuning [11]
or self-supervised [9] training on anomaly-free samples would help to produce better representations.

In addition, we observe that the anomaly detection and localization results are still affected by noise. The anomaly-free
samples in the MVTec [2] are limited, but traditional data augmentation strategies might make the anomaly-free samples out
of the distribution. Developing reasonable data augmentation strategies in training will improve the overall AD performance.

In conclusion, we believe that the future work mentioned above combined with reverse distillation will improve the
anomaly detection performance even further.
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Figure 1. Positive samples of the carpet.



Figure 2. Positive samples of the grid.

Figure 3. Positive samples of the leather.

Figure 4. Positive samples of the tile.

Figure 5. Positive samples of the wood.



Figure 6. Positive samples of the bottle.

Figure 7. Positive samples of the cable.

Figure 8. Positive samples of the capsule.

Figure 9. Positive samples of the hazelnut.



Figure 10. Positive samples of the metal nut.

Figure 11. Positive samples of the pill.

Figure 12. Positive samples of the screw.

Figure 13. Positive samples of the toothbrush.



Figure 14. Positive samples of the transistor.

Figure 15. Positive samples of the zipper.

Figure 16. Negative samples of the textures.



Figure 17. Negative samples of the objects.


