GRAM: Generative Radiance Manifolds for 3D-Aware Image Generation
(Supplementary Material)
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Figure I. Detailed network structures of (a) the manifold predictor M and (b) the radiance generator ®.

I. More Implementation Details
I.1. Data Preparation

FFHQ [7]. We align the face images in FFHQ using 5 fa-
cial landmarks to centralize the faces and normalize their
scales. Specifically, we first detected 5 facial landmarks
of the images using an off-the-shelf landmark detector [2].
Then we follow [5] to resize and crop the images by solv-
ing a least square problem between the detected keypoints
and corresponding 3D keypoints derived from a 3D face
model [11]. For pose distribution estimation, the face re-
construction method of [5] is applied to extract the face
poses for all the training images. Gaussian distributions are
then fitted on the extracted poses, which are defined by the
yaw and pitch angles (standard deviation 0.3 radians and
0.15 radians, respectively). During GAN training, we sam-
ple camera pose from the distributions and generate images
accordingly. The extracted poses also serve as the pseudo
labels for the pose regularization term defined in Eq. (9) of
the main paper.

Cats [14]. For the cat images, we follow a similar proce-
dure to align and resize the images using landmarks pro-

vided by the dataset [14]. We also estimate the camera pose
by solving the least square problem between the provided
2D landmarks and a set of manually-selected 3D landmarks
on a 3D cat mesh. We found the pose distribution is very
close to face images in FFHQ, and thus we simply use the
same Gaussian to sample poses during training.

CARLA [6,12]. We directly resize the car images ren-
dered by [12] to 1282 resolution without any alignment.
Following [3, 12], we uniformly sample camera pose from
the upper hemisphere during training.

I.2. Network Structure

Manifold predictor M. Figure I (a) shows the structure
of the manifold predictor, which is an MLP with three hid-
den layers and an output layer. We set the channel dimen-
sion of the hidden layers to 128, 64, and 256 for FFHQ,
Cats, and CARLA, respectively. These channel dimensions
are empirically chosen without careful tuning.

Radiance generator ®. Figure I (b) shows the detailed
structure of the radiance generator, which consists of a map-
ping network and a synthesis network. The mapping net-



work is an MLP with three hidden layers of dimension 256.
The synthesis network consists of 8 FiLM SIREN blocks [3]
of dimension 256, and one FiILM SIREN block of dimen-
sion 259 which receives an extra view direction as input.

L.3. More Training Details

During training, we randomly sample latent code z from
the normal distribution and camera pose 0 from the known
or estimated distributions of the training datasets. We
jointly learn the manifold predictor M, the radiance gener-
ator ®, and the discriminator D using the losses described
in the main paper. Geometric initialization [1] is applied for
the weights of M to obtain sphere-like initial isosurfaces.
For FFHQ and Cats, we set the sphere center to (0,0, —1.5)
for human face and cat centered in the [—1, 1]? cube. For
CARLA, we set the center to (0, 0,0) to obtain hemispher-
ical manifolds, as shown in Fig. 7 of the main paper. The
{l;} are set to generate initial isosurfaces evenly positioned
across the whole 3D volume. In addition, for FFHQ and
Cats, we set the farmost surface to be a fixed plane to repre-
sent background. To calculate ray-surface intersections, we
uniformly sample 64 points along each ray and calculate the
intersections via Eq. (5) in the main paper. The weights of
the radiance generator ¢ and the discriminator D are ini-
tialized following [3].

To enable training at 2562 resolution, we use PyTorch’s
Automatic Mixed Precision (AMP) to reduce memory cost.
We also use the mini-batch aggregation strategy similar
to [3] to ensure a relatively large batch size (16 for 2562
resolution and 32 for 128 resolution) during training. We
train GRAM for 120K iterations, 80K iterations, and 70K
iterations on FFHQ, Cats, and CARLA, respectively. Train-
ing took 3 to 7 days depending on the dataset and image
resolution.

L.4. Image Embedding Details

Given a real image I, we freeze the weights of the
generator (G, and optimize the frequencies « and phase
shifts 3 for each FiLM SIREN block to generate an im-
age Igen = Gsyn (7, 3) that best matches the input image.
To achieve this, we use an objective function consisting of
several terms:

Lemb :HI - Igen||2 + (1_ < fid(I)afid(Igen) >)
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+LPIPS(I, Igen) + |lv = I + 118 = BII,
where f;4 is the identity feature extracted from a face recog-
nition network [4], and LPIPS(:,-) is the perceptual loss
from [13]. 4 and (3 are average frequencies and phase shifts
calculated using 10K random samples. We also initialize v
and 3 with the average values. We use the Adam optimizer
with 81 = 0.9 and B2 = 0.999. The learning rate is set to
4 %1073, and we optimize 4 and 3 for 20K iterations. After
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Figure II. Learned 3D geometry with and w/o pose regularization.

Figure III. Exaggerated parallax artifacts on generated subjects.

optimization, we can freely move the camera to synthesize
an image at novel views.

I1. More Results
IL.1. Qualitative Results

Figure IV, V, and VI show more visual results of GRAM.
Our method can generate realistic images with strong mul-
tiview consistency. Animation results can be found on the
project page.

I1.2. Comparisons

More comparisons with previous methods. Figure VII
shows more visual comparisons between GRAM and the
previous 3D-aware image generation methods [3, 10, 12].
Our method achieves the best result in terms of image qual-
ity and 3D consistency. Animations can be found on the
project page.

More comparisons with NeRF-H sampling. Figure VIII
shows the visual comparisons between our manifold sam-
pling strategy and the original NeRF-H [3,9] sampling strat-
egy. Our method achieves better visual quality with finer
details. More importantly, NeRF-H fails to learn reasonable
3D structures of the generated instances with a number of
sampling points fewer than 12. It still produces undesired
artifacts (e.g., the concave forehead geometry which creates
hollow-face illusion), even trained with 48 sampling points.
In contrast, our method can learn reasonable 3D geometry
with as few as 6 points (surfaces). We hardly observe the
concave forehead issue for the generated instances in our
cases.

I1.3. Failure Cases

Concave geometry. We empirically found that for cats,
dropping pose regularization sometimes led to unstable
training and yielded wrong pose and geometry (which is



known as the “hollow-face illusion”; see Fig. II). Training
on faces and cars were quite stable no matter pose regular-
izations were used or not.

Exaggerated parallax artifacts. When varying camera
poses, some contents (e.g. hair fringes) on certain generated
subjects could float away from their expected positions, as
shown in Fig. III. This is due to that the fixed and limited
number of surface manifolds across the whole category can-
not provide accurate depth for all structures on every sin-
gle subject. The problem could be alleviated when using
instance-specific surfaces, which we will explore in future
works.

I1.4. Camera Zoom

As shown in Fig. IX, GRAM can generate reasonable
results with camera zoom-in and zoom-out effects. Anima-
tions can be found on the project page.

I1.5. Latent Space Interpolation

We show the results of latent code interpolation in
Fig. X. The continuous semantic changes between adjacent
images demonstrate the reasonable latent space learned by
GRAM.

I1.6. Style Mixing

Figure XI shows the style mixing results between source
subjects and target subjects. Similar to [7, 8], styles in shal-
lower layers (layer 1 to 5) of GRAM mainly control ge-
ometry, while styles in deeper layers (layer 6 to 9) control
appearance. Note that our method is not trained with the
style mixing strategy.

I1.7. Image Embedding and Editing

Animations of the image editing results can be found on
the project page. We achieve pose control of the embedded
images and well maintain the 3D consistency even for fine
details.
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Figure IV. Multiview generation results of GRAM on FFHQ.



Figure V. Multiview generation results of GRAM on Cats.
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Figure VII. More qualitative comparisons with previous 3D-aware image generation methods on three datasets.
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Figure IX. Generation results under camera zoom-in and zoom-out.



Figure X. Latent space interpolation results.
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Figure XI. Style mixing between different generated subjects. Note that our method is not trained with the style mixing strategy.




