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1. Introduction

In this supplementary material, we present more exper-
iments and analyses, as well as discuss the limitations and
future work of our method. Specifically, we first provide
the visualization results of our proposed SHA+GCL to
intuitively show its outstanding performance in generating
unbiased scene graphs. We then analyse the number
of parameters towards our proposed method, and present
additional results of various model-agnostic debiasing ap-
proaches towards the regular Recall@K and the unbiased
Mean Recall@K. Ultimately, we discuss the limitations of
our method, based on which we provide several potential
directions to further improve our SHA+GCL network.

2. Visualization Results

To get an intuitive perception of the superior perfor-
mance in generating unbiased scene graphs of our proposed
GCL, we visualize several PredCls examples generated
from the biased SHA and the unbiased SHA+GCL. As
shown in Figure 1, the model employing the proposed
GCL strategy prefers to providing more informative and
specific relationship predictions (e.g., lying on and riding)
rather than common and trivial ones (e.g., on and has),
e.g., “personl-riding-elephant” in the top-right example and
“train-pulling-car” in the bottom-left example. Moreover,
the model equipped with our model-agnostic GCL could
also capture potential reasonable relationships, such as
“personl-watching-person2” in the top-right example and
“sidewalk-beside-train” in the bottom-left example. In a
nutshell, the proposed GCL could enhance the unbiased
relationship predictions, thus achieving more informative
scene graphs to support various down-stream tasks.

3. Parameter Statistics

We compare the total number of parameters between
three baseline methods (i.e., Motifs, VCTree, and SHA)
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and their enhanced versions that are equipped with our
model-agnostic GCL in Table 1. As can be observed,
compared with the original methods which possess massive
number of total trainable parameters (about 200M), GCL
only additionally introduces a limited number of parame-
ters (about 2M), which could hardly influence the overall
training procedure.

4. Detailed Performance

We present the complete results of our experiments
employing the regular Recall@K [9], the unbiased Mean
Recall@K [1,13], and their mean [8] on all three tasks (i.e.,
PredCls, SGCls, and SGDet) on VG150 [6] and GQA200
[4] dataset in Table 2, where K € {50,100}. Note that all
the methods are implemented with a pre-trained Faster R-
CNN [10] with ResNeXt-101-FPN [14] provided by [12] as
the object detector, thus we could give a fair comparison to
prove the superiority of our method.

From Table 2, we observe that 1) our proposed
SHA+GCL achieves the best performance on all three tasks
towards the unbiased metric mR@XK in both two datasets.
In VG150, we breakthrough the 40% precision in both
mR@50 and mR@100 on PredCls, and 20% precision in
mR@100 on both SGCls and SGDet, thus establishing
a new state-of-the-art in the unbiased metric. 2) Our
improvement towards the relation decoder, namely GCL
strategy, is model-agnostic and could largely enhance the
unbiased SGG. In both VG150 or GQA200, the method
equipped with GCL nearly doubles the performance
compared with the original one, showing the outstanding
capability in generating unbiased scene graphs.

5. Limitations and Future Work

In this section, we would like to discuss the limitations
of our method, based on which we provide several potential
directions to further improve our SHA+GCL.



Visualization Results for VG150 Dataset
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Figure 1. Qualitative comparisons between SHA and SHA+GCL with regard to R@20 on PredCls setting. Green edges represent the
ground truth relationships that are correctly predicted, red edges represent the ground truth relationships that are failed to be detected, and
purple edges represent the reasonable relationships which are predicted by the model but are not annotated in the ground truth.

Model Fixed Trainable Model Fixed Trainable Model Fixed Trainable
Motifs 158. "M 208.5M VCTree 158.7M 199.8M SHA 158.7M  228.8M
Motifs + GCL 158.7M 210.5M VCTree + GCL  158.7M 201.8M SHA + GCL 158.7M  230.9M

Table 1. Comparison of different methods on number of parameters. “Fixed” counts the number of parameters that belong to the pre-trained
object detector, and “Trainable” counts the number of parameters that can be updated during the training procedure.

5.1. More Configurations Could be Further Ex-
plored

As aforementioned, we follow the intuition of “divide-
conquer-cooperate” to address the biased relationship pre-
dictions. In the second step, namely “conquer”, we borrow
the idea from class-incremental learning [3] and employ the
group-incremental configuration. Actually, we employ this
configuration mainly due to its simplicity and efficiency, as
we could directly leverage the final classifier that covers
all the candidate classes to obtain the predictions in the
evaluation stage. However, we should argue that it is not
the only alternative to fulfill the “conquer” step. Therefore,
in the future, we aim to explore more robust group dividing
methods as well as classifier configuration strategies to pro-
mote the unbiased SGG, e.g., the group-split configuration
in Figure 2.
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Figure 2. The group-incremental configuration (left) may not
be the only alternative to fulfill the “conquer” step in GCL. For
example, the group-split configuration (right) is another promising
strategy. Therefore, we aim to explore more robust group dividing
methods and classifier configuration strategies in the future.

5.2. “Strong Constraint” Could be Further En-
hanced

As aforementioned, in the “cooperate” step, we use the
collaborative knowledge distillation to establish an effective



knowledge transfer mechanism, where a regular Kullback-
Leibler Divergence loss is employed. However, since vari-
ous novel methods [5] have been proposed in the knowledge
distillation area, we could further enhance our GCL by
devising more efficient strategies, thus strengthening the
“Strong Constraint” and promoting the unbiased SGG.
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Evaluation on Visual Genome Dataset

Model PredCls SGCls SGDet MEAN
R@50/100 mR@50/100 | R@50/100 mR@50/100 | R@50/100 mR@50/100 | R-M mR-M
IMPT [11] 61.1/63.1 11.0/11.8 37.4/38.3 6.4/6.7 23.6/28.7 33/4.1 420 72
GPS-Net' [7] 65.2/67.1 152/16.6 37.8/39.2 8.5/9.1 31.1/35.9 6.7/8.6 46.1 10.8
SG-CogTree [15] 38.4/39.7 28.4/31.0 229/23.4 157/16.7 19.5/21.7 11.1/12.7 276 193
BGNN [7] 59.2/61.3 30.4/329 37.4/38.5 14.3/16.5 31.0/35.8 10.7/12.6 439 19.6
VTransE [12] 65.7/67.6 14.7/15.8 38.6/39.4 8.2/8.7 29.7/34.3 5.0/6.0 459 9.7
VTransE + TDE [12] 48.5/43.1 24.6/28.0 257/28.5 129/14.8 18.7/22.6 8.6/10.5 312  16.6
VTransE + GCL 354/37.3 34.2/363 25.8/269 20.5/21.2 146/17.1 13.6/15.5 262 235
Motifs [12] 65.2/67.0 14.8/16.1 38.9/39.8 8.3/8.8 32.8/37.2 6.8/7.9 46.8 10.4
Motifs + Reweight [2] 54.7/56.5 17.3/18.6 29.5/31.5 11.2/11.7 24.4/29.3 9.2/109 377 132
Motifs + TDE [12] 46.2/51.4 25.5/29.1 27.7/29.9 13.1/14.9 16.9/20.3 8.2/9.8 32.1  16.8
Motifs + PCPL' [2] 54.7/56.5 24.3/26.1 35.3/36.1 12.0/12.7 27.8/31.7 10.7/12.6 404 164
Motifs + CogTree [15] 35.6/36.8 26.4/29.0 21.6/222 149/16.1 20.0/22.1 104/11.8 264 18.1
Motifs + DLFE [2] 52.5/542 269/28.8 323/33.1 152/159 254/294 11.7/13.8 37.8 18.7
Motifs + EMB [11] 652/67.3 18.0/19.5 39.2/40.0 10.2/11.0 31.7/36.3 77193 46.6 12.6
Motifs + GCL 42.7/444  36.1/38.2 26.1/27.1 20.8/21.8 184/22.0 16.8/19.3 30.1 255
VCTree [12] 65.4/67.2 16.7/18.2 46.7/47.6 11.8/12.5 31.9/36.2 741787 49.2 12.6
VCTree + Reweight [2] 60.7/62.6 19.4/204 423/435 125/13.1 27.8/32.0 8.7/10.1 448 14.0
VCTree + TDE [12] 47.2/51.6 254/28.7 254/279 122/14.0 19.4/23.2 9.3/11.1 325 16.8
VCTree + PCPL' [2] 56.9/58.7 22.8/24.5 40.6/41.7 15.2/16.1 26.6/30.3 10.8/12.6 425 17.0
VCTree + CogTree [15] 44.0/454 27.6/29.7 309/31.7 18.8/19.9 182/204 104/12.1 31.8 19.8
VCTree + DLFE [2] 51.8/53.5 253/27.1 33.5/34.6 18.9/20.0 22.7/263 11.8/13.8 37.1 195
VCTree + EMB [1 1] 64.0/658 18.2/19.7 4477458 12.5/13.5 31.4/35.9 7.71719.1 479 135
VCTree + GCL 40.7/427 37.1/39.1 27.7128.7 22.5/23.5 17.4/20.7 152/17.5 29.6 258
SHA 64.3/66.4 18.8/20.5 38.0/39.0 109/11.6 30.6/34.9 7.8/9.1 455 13.1
SHA + GCL 35.1/37.2 41.6/44.1 22.8/239 23.0/24.3 149/182 17.9/20.9 254  28.6
Evaluation on GQA Dataset
Model PredCls SGCls SGDet MEAN
R@50/100 mR@50/100 | R@50/100 mR@50/100 | R@50/100 mR@50/100 | R-M  mR-M

VTransE 55.7/579 14.0/15.0 33.4/34.2 8.1/8.7 27.2130.7 5.8/6.6 399 9.6
VTransE + GCL 355/374 304/323 229/23.6 166/17.4 153/18.0 14.7/164 254 214
Motifs 65.3/668 164/17.1 34.2/34.9 8.2/8.6 28.9/33.1 6.4/7.7 439 109
Motifs + GCL 4457462 36.7/38.1 23.2/24.0 17.3/18.1 18.5/21.8 16.8/18.8 297 242
VCTree 63.8/657 166/17.4 34.1/34.8 7.9/8.3 28.3/31.9 6.5/7.4 43.1  10.5
VCTree + GCL 44.8/46.6 35.4/36.7 2371245 17.3/18.0 17.6/20.7 15.6/17.8 29.6 236
SHA 63.3/652 19.5/21.1 32.7/33.6 8.5/9.0 25.5/29.1 6.6/7.8 416 12.1
SHA + GCL 427771445 41.0/42.7 21.4/222 20.6/21.3 14.8/17.9 17.8/20.1 273 273

Table 2. Detailed performance comparison of different methods on PredCls, SGCls, and SGDet tasks of both VG150 and GQA200 with
respect to R@50/100 (%), mR@50/100 (%), and their mean (%). R-M and mR-M denote the mean on all three tasks over R@50/100 and
mR @50/100, respectively. The optimal results from the same baseline (i.e., VTransE, Motifs and VCTree) in VG150 are underlined. The
global optimal results over all the methods in VG150 and GQA200 are in bold. The superscript T denotes that the method is reproduced.
Note that all the methods are implemented on the same object detector, i.e., a pre-trained Faster R-CNN with ResNeXt-101-FPN.
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