Supplementary Material
A. Experimental details

We summarize the OOD detection evaluation task in Table 6. The OOD test dataset is selected from MS-COCO and
nulmages dataset, which contains disjoint labels from the respective ID dataset. For the Youtube-VIS dataset, we use the
dataset released in year 2021. Since there are no ground truth labels available for the validation images, we select the last
597 videos in the training set as the in-distribution evaluation dataset. The remaining 2,388 videos are used for training.
The BDD100K and Youtube-VIS model are both trained for a total of 52,500 iterations. See detailed ablations on the
hyperparameters in Section 4.3 of the main paper.

Task 1 Task 2
ID train dataset BDDI100K train  Youtube-VIS train
ID val dataset BDDI100K val Youtube-VIS val
OOD dataset COCO / nulmages COCO / nulmages
#ID train images 273,406 67,861
#ID val images 39,973 21,889
#00D images from COCO 1,914 28,922
#00D images from nulmages 2,100 2,100

Table 6. OOD detection evaluation tasks.

B. In-distribution classes

We provide a detailed description of the in-distribution classes for the two video datasets as follows.

BDD100K dataset contains 8 classes, which are pedestrian, rider, car, truck, bus, train, motorcycle, bicycle.

The Youtube-VIS dataset contains 40 classes, which are airplane, bear, bird, boat, car, cat, cow, deer, dog, duck, ear-
less_seal, elephant, fish, flying _disc, fox, frog, giant_panda, giraffe, horse, leopard, lizard, monkey, motorbike, mouse, parrot,
person, rabbit, shark, skateboard, snake, snowboard, squirrel, surfboard, tennis_racket, tiger, train, truck, turtle, whale,
zebra.

C. Software and hardware

We run all experiments with Python 3.8.5 and PyTorch 1.7.0, using NVIDIA GeForce RTX 2080Ti GPUs.

D. Baselines

To evaluate the baselines, we follow the original methods in MSP [17], ODIN [33], Generalized ODIN [20], Mahalanobis
distance [31], CSI [59], energy score [36] and gram matrices [54] and apply them accordingly on the classification branch
of the object detectors. For ODIN [33], the temperature is set to be 7' = 1000 following the original work. For both ODIN
and Mahalanobis distance [31], the noise magnitude is set to O because the region-based object detector is not end-to-end
differentiable given the existence of region cropping and ROIAlign. For GAN [30], we follow the original paper and use a
GAN to generate OOD images. The prediction of the OOD images/objects is regularized to be close to a uniform distribution,
through a KL divergence loss with a weight of 0.05. We set the shape of the generated images to be 100x 100 and resize
them to have the same shape as the real images. We optimize the generator and discriminator using the Adam optimizer [26],
with a learning rate of 0.001. For CSI [59], we use the rotations (0°, 90°, 180°, 270°) as the self-supervision task. We set
the temperature in the contrastive loss to 0.5. We use the features right before the classification branch (with the dimension
to be 1024) to perform contrastive learning. The weights of the losses that are used for classifying shifted instances and
instance discrimination are both set to 0.1 to prevent training collapse. For Generalized ODIN [20], we replace and train the
classification head of the object detector by the most effective Deconf-C head shown in the original paper.

E. Ablation study on a different backbone architecture

In this section, we evaluate the proposed STUD using a different backbone architecture of the Faster-RCNN, which is
RegNetX-4.0GF [49]. Similarly, we compare with the same set of OOD detection baselines as stated in the main paper. The



In-distribution D Method FPRYS | AUROC 1 mAP (ID)t
OOD: MS-COCO / nulmages

MSP [17] 80.09/93.05 7419/63.14 320
ODIN [33] 64.74/82.08 77.65/67.09 32.0
Mahalanobis [3 1] 54.02/79.85 8238/75.48 32.0
Gram matrices [54] 63.96/63.61 67.56/67.47 32.0
BDD100K Energy score [36] 64.79/81.62 78.78/69.43 32.0
Generalized ODIN [20]  60.76/82.00  80.14/70.74 32.5
CSI [59] 52.98/80.00 83.57/7491 318
GAN-synthesis [30] 58.35/83.65 81.43/7039 315
STUD (ours) 52.51/79.75 84.03/7655 323
MSP [17] 89.86/97.42 67.04/54.02 267
ODIN [33] 89.28/96.30 67.54/60.82 267
Mahalanobsis [3 1] 90.00/94.44 70.47/5483 267
Gram matrices [54] 87.64/91.25 69.76/61.43 26.7
Energy score [30] 88.54/90.21 67.83/58.02 26.7
Youtube-VIS Generalized ODIN [20]  85.15/98.00 71.57/64.23 27.3
CSI [59] 82.43/88.61 71.81/54.00 242
GAN-synthesis [30] 85.75/9375 72.95/56.94 25.5
STUD (ours) 81.14/80.77 74.82/69.52 272

Table 7. Comparison with competitive out-of-distribution detection methods. All baseline methods are based on a model trained on ID
data only using RegNetX-4.0GF as the backbone. 1 indicates larger values are better, and | indicates smaller values are better. All values
are percentages. Bold numbers are superior results.

results are shown in Table 7.

From Table 7, we demonstrate that STUD is effective on alternative neural network architectures. In particular, using Reg-
Net [49] as backbone yields better OOD detection performance compared with the baselines. Moreover, we show that STUD
achieves stronger OOD detection performance while preserving or even slightly increasing the object detection accuracy on
ID data (measured by mAP). This is in contrast with CSI, which displays significant degradation, with mAP decreasing by
3% on Youtube-VIS.

F. Additional related work

Video anomaly detection (VAD) aims to identify anomalous events on both the object level [7,22,68] and frame level [35,

,51] by techniques such as skeleton trajectory modeling [43], weakly supervised learning [69], attention [47], temporal
pose graph [38], self-supervised learning [10] and autoencoders [3]. Compared with STUD, the anomalies in VAD do not
necessarily have different semantics from the ID training data. Moreover, none of the approaches considered synthesizing
unknowns with the help of videos or energy-based model regularization.

G. Additional visualization examples

We provide additional visualization of the detected objects on different OOD datasets with models trained on different
in-distribution datasets. The results are shown in Figures 7-10.
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Figure 7. Additional visualization of detected objects on the OOD images (from MS-COCO) by a vanilla Faster-RCNN (top) and STUD
(bottom). The in-distribution is BDD100K dataset. Blue: Objects detected and classified as one of the ID classes. Green: OOD objects
detected by STUD, which reduce false positives among detected objects.
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Figure 8. Additional visualization of detected objects on the OOD images (from nulmages) by a vanilla Faster-RCNN (fop) and STUD
(bottom). The in-distribution is BDD100K dataset. Blue: Objects detected and classified as one of the ID classes. Green: OOD objects
detected by STUD, which reduce false positives among detected objects.
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Figure 9. Additional visualization of detected objects on the OOD images (from MS-COCO) by a vanilla Faster-RCNN (top) and STUD
(bottom). The in-distribution is Youtube-VIS dataset. Blue: Objects detected and classified as one of the ID classes. Green: OOD objects
detected by STUD, which reduce false positives among detected objects.



Figure 10. Additional visualization of detected objects on the OOD images (from nulmages) by a vanilla Faster-RCNN (top) and STUD
(bottom). The in-distribution is Youtube-VIS dataset. Blue: Objects detected and classified as one of the ID classes. Green: OOD objects
detected by STUD, which reduce false positives among detected objects.
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