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Figure 5. The extracted skeletons of the NTURGB+D dataset.
The actions of the visualized frames are: “cheer up”, “touch other
person’s pocket”, “jump up”, “put the palms together”, “taking a
selfie”, “shake fist”.

1. Visualization

We provide more visualization of the extracted pose of
the four datasets: FineGYM, NTURGB+D, Kinetics400,
Volleyball to demonstrate the performance of the pro-
posed pose extraction approach qualitatively. You can
watch the corresponding videos at https://youtu.
be/oS7fX9Eg2ws.

NTURGB+D [12, 17]. Figure 5 displays some
examples of extracted skeletons of NTURGB+D. Our
pose extractor achieves almost perfect performance on
NTURGB+D due to the simple scenarios: the background
scene is not complicated, while there are two persons at
most in each frame, with little occlusion.

FineGYM [18]. Figure 6 displays some examples
of extracted skeletons of FineGYM. Although we perform
pose extraction with ground-truth bounding boxes of the
athletes, the extracted 2D poses are far from perfect. The
pose extractor is extremely easy to make mistakes for poses
the rarely occur in COCO-keypoint [11] or when motion
blur occurs. Even though the quality of extracted skeletons
are not satisfying, they are still discriminative enough for
skeleton-based action recognition.

Figure 6. The extracted skeletons of the FineGYM dataset.
The extracted skeletons are far from perfect, but discriminative
enough for action recognition.

Figure 7. The extracted skeletons of the Kinetics400 dataset.

Kinetics400 [1]. Kinetics400 is not a human-centric
dataset for action recognition. In Kinetics videos, the per-
son locations, scales, and the number of persons may vary
a lot, which makes extracting human skeletons of Kinet-
ics400 much more difficult than NTURGB+D or FineGYM.
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Figure 8. The extracted skeletons of the Volleyball dataset.

In Figure 7, we provide some examples that our pose es-
timator accurately predicts the human skeletons. We also
discuss some failure cases in Sec 4.7.

Volleyball [7]. Volleyball is a group activity recogni-
tion dataset. Each frame of a video contains around a dozen
people (six for each team). Most of the human poses in a
volleyball video are regular ones (unlike FineGYM). In Fig-
ure 8, we see that our pose extractor can predict the human
pose of each person accurately.

2. Generating Pseudo Heatmap Volumes.

In this section, we illustrate how we generate
the pseudo heatmap volumes, the input of PoseC-
onv3D. We also provide a jupyter notebook named
GenPseudoHeatmaps.ipynb in supplementary mate-
rials, which can extract skeleton keypoints from RGB
videos (optional) and generate pseudo heatmaps based on
the skeleton keypoints.

Figure 9 illustrates the pipeline of pose extraction
(RGB video → coordinate-triplets) and generating pseudo
heatmap volumes (coordinate-triplets → 3D heatmap vol-
umes). The visualization in Figure 9 is just for one frame,
while you can find the visualization for the entire video in
the jupyter notebook. Since the heatmaps are of K channels
(K = 17 for COCO-keypoints), we visualize the heatmap
in one 2D image with color encoding. The pose extraction
part is straight-forward: we use a Top-Down pose estima-
tor instantiated with HRNet [19] to extract the 2D poses
for each person in each frame, and save the extracted poses
as coordinate-triplets: (x, y, score). For generating pseudo
heatmaps, we first perform uniform sampling, which will
sample T (T = 32 or 48 in experiments) frames uni-
formly from the video and discard the remaining frames.
After that, we will find a global cropping box (The red
box in Figure 9, same for all T frames) that envelops all
persons in the video, and crop all T frames with that box
to reduce the spatial size (as illustrated in Figure 9). In
GenPseudoHeatmaps.ipynb, you can run the entire
pipeline to process a video from the NTURGB-D dataset.

3. Detailed Architectures of PoseConv3D and
RGBPose-Conv3D

3.1. Different variants of PoseConv3D.

In Table 11, we demonstrate the architectures of the three
backbones we adapted from RGB-based action recognition
as well as their variants:

C3D [20]. C3D is one of the earliest 3D-CNN devel-
oped for RGB-based action recognition (like AlexNet [9]
for image recognition), which consists of eight 3D convolu-
tion layers. To adapt C3D for skeleton-based action recog-
nition, we reduce its channel-width to half (64 → 32) for
better efficiency. In addition, for Pose-C3D-s, we remove
the last two convolution layers.

X3D [4]. X3D is a recent state-of-the-art 3D-CNN
for action recognition. Replacing vanilla convolutions with
depth-wise convolutions, X3D achieves competitive recog-
nition performance with tiny amounts of parameters and
FLOPs. The architecture of the adapted Pose-X3D is almost
unchanged compared to the original X3D-S, except that we
remove the original first stage. For Pose-X3D-s, we remove
convolution layers from each stage uniformly by changing
the hyper-parameter γd from 2.2 to 1.

SlowOnly [5]. SlowOnly is a popular 3D-CNN used
for RGB-based action recognition. It is obtained by inflat-
ing the ResNet layers in the last two stages from 2D to 3D.
To adapt SlowOnly for skeleton-based action recognition,
we reduce its channel-width to half (64 → 32) as well
as remove the original first stage in the network. We also
have conducted experiments with Pose-SlowOnly-wd (with
channel-width 64) and Pose-SlowOnly-HR (with 2x larger
input and deeper network). There is no performance im-
provement despite the much heavier backbone.

3.2. RGBPose-Conv3D instantiated with SlowOnly.

RGBPose-Conv3D is a general framework for RGB-
Pose dual-modality action recognition, which can be instan-
tiated with various 3D-CNN backbones. In this work, we
instantiate both pathways with the SlowOnly network. As
shown in Table 12, the RGB pathway has a smaller frame
rate and a larger channel width since RGB frames are low-
level features. On the contrary, the Pose pathway has a
larger frame rate and a smaller channel width. Time stride
convolutions are used as bi-directional lateral connections
between the two pathways (after res3 and res4) so that se-
mantics of different modalities can sufficiently interact. Be-
sides lateral connections, the predictions of two pathways
are also combined in a late fusion manner, which leads to
further improvements in our empirical study. RGBPose-
Conv3D is trained with two individual losses respectively
for each pathway, as a single loss that jointly learns from
two modalities leads to severe overfitting.
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Figure 9. The pipeline of generating the input of PoseConv3D. Left, Pose Extraction: We perform Top-Down pose estimation for
each single frame. The estimated 2D poses are saved as coordinate-triplets: (x, y, score). Right, Generating Pseudo Heatmap Volumes:
Based on the coordinate-triplets, we generate pseudo heatmaps for joints and limbs using Eq 1, 2 in the main paper. We perform subjects-
centered cropping and uniform sampling to make the heatmap volumes compact.

4. Supplementary Experiments

4.1. Ablation Study on Pose Extraction

This section discusses different alternatives that can be
adopted in pose extraction to validate our choice. The input
size for all 3D-CNN experiments is T × H × W = 48 ×
56× 56.

2D v.s. 3D Skeletons. We first compare the recogni-
tion performance of using 2D and 3D skeletons for action
recognition. The 3D skeletons are either collected by sen-
sors (NTU-60) or estimated with state-of-the-art 3D pose
estimators based on RGB inputs [8, 21] (FineGYM). For a
fair comparison, we use MS-G3D [14] (the current state-
of-the-art GCN for skeleton-based action recognition) with

the same configuration and training schedule for 2D and 3D
keypoints and list the results in Table 13a. The estimated
2D keypoints (even low-quality ones) consistently outper-
form 3D keypoints (sensor collected or estimated) in action
recognition. Besides RGB-based 3D-pose estimators, we
also consider the ‘lifting’ approaches [15, 16], which di-
rectly ‘lift’ 2D-pose (sequences) to 3D-pose (sequences).
We regress the 3D poses based on 2D poses extracted with
HRNet, use the lifted 3D poses for action recognition. The
results in Table 13b indicate that such lifted 3D poses do not
provide any additional information, performs even worse
than the original 2D poses in action recognition.

Bottom-Up v.s. Top-Down. To compare the pose es-
timation quality of Bottom-Up and Top-Down approaches,



Table 11. The architecture of PoseConv3D instantiated with three backbones: C3D, X3D, SlowOnly. The dimensions of kernels are
denoted by T × S2, C for temporal, spatial, channel sizes. Strides are denoted with T, S2 for temporal and spatial strides. GAP denotes
global average pooling.

stage C3D-s C3D X3D-s X3D SlowOnly SlowOnly-wd SlowOnly-HR

data layer Uniform 48, 56 ×56 Uniform 48, 112 ×112

stem layer conv 3×32, 32

conv 1×32, 24

stride 1, 22

conv 5×12, 24

conv 1×72, 32 conv 1×72, 64 conv 1×72, 32

stage1
maxpool 1×22

[3×32, 64]×1


1×12, 54

3×32, 54

1×12, 24

×2


1×12, 54

3×32, 54

1×12, 24

×5 None


1×12, 32

1×32, 32

1×12, 128

×3

stage2
maxpool 1×22

[3×32, 128]×2


1×12, 108

3×32, 108

1×12, 48

×5


1×12, 108

3×32, 108

1×12, 48

×11


1×12, 32

1×32, 32

1×12, 128

×4


1×12, 64

1×32, 64

1×12, 256

×4

stage3
maxpool 1×22

[3×32, 256]×2


1×12, 216

3×32, 216

1×12, 96

×3


1×12, 216

3×32, 216

1×12, 96

×7


3×12, 64

1×32, 64

1×12, 256

×6


3×12, 128

1×32, 128

1×12, 512

×6

stage4 None [3×32, 256]×2 conv 1×12, 216


3×12, 128

1×32, 128

1×12, 512

×3


3×12, 256

1×32, 256

1×12, 1024

×3

GAP, fc

Table 12. RGBPose-Conv3D instantiated with the SlowOnly
backbone. The dimensions of kernels are denoted by T × S2, C
for temporal, spatial, channel sizes. Strides are denoted with
T, S2 for temporal and spatial strides. The backbone we use is
ResNet50. GAP denotes global average pooling.

stage RGB Pathway Pose Pathway output sizes T×S2

data layer uniform 8,12 uniform 32,42
RGB: 8×2242

Pose: 32×562

stem layer

conv 1×72, 64

stride 1, 22

maxpool 1×32

stride 1, 22

conv 1×72, 32

stride 1, 12
RGB: 8×562

Pose: 32×562

res2


1×12, 64

1×32, 64

1×12, 256

×3 N.A.
RGB: 8×562

Pose: 32×562

res3


1×12, 128

1×32, 128

1×12, 512

×4


1×12, 32

1×32, 32

1×12, 128

×4
RGB: 8×282

Pose: 32×282

res4


3×12, 256

1×32, 256

1×12, 1024

×6


3×12, 64

1×32, 64

1×12, 256

×6
RGB: 8×142

Pose: 32×142

res5


3×12, 512

1×32, 512

1×12, 2048

×3


3×12, 128

1×32, 128

1×12, 512

×3
RGB: 8×72

Pose: 32×72

GAP, fc GAP, fc # classes

we instantiate the two approaches with the same backbone
(HRNet-w32). Besides, we also instantiate the Top-Down
approach with the MobileNet-v2 backbone for comparison,

which has a similar performance to HRNet (Bottom-Up)
on COCO-validation. We use extracted 2D poses to train
a Pose-SlowOnly on NTU-60. Table 13c shows that the per-
formance of HRNet (Bottom-Up) on COCO-val is much
worse than HRNet (Top-Down) and close to MobileNet
(Top-Down). However, the Top-1 accuracy of HRNet
(Bottom-Up) is much higher than MobileNet (Top-Down)
and close to HRNet (Top-Down). Although the potential
of Bottom-Up should not be neglected, considering the bet-
ter performance and faster inference speed (Top-Down runs
faster when there aren’t many persons in a frame), we use
Top-Down for pose extraction in this work.

Interested Person v.s. All Persons. Many people may
exist in a video, but not all of them are related to the in-
terested action. For example, in FineGYM, only the pose
of the athlete is helpful, while other persons like the audi-
ence or referee are unrelated. We compare using 3 kinds
of person bounding boxes for pose extraction: Detection,
Tracking(with Siamese-RPN [10]) and GT (with increas-
ing prior about the athlete). In Table 13d, we see that the
prior of the interested person is extremely important: even
weak prior knowledge (1 GT box per video) can improve
the performance by a large margin.

Coordinates v.s. Heatmaps. Storing 3D heatmap vol-
umes may take vast amounts of disk space. To be more
efficient, we can save the 2D poses as coordinate-triplets
(x, y, score) and restore them to 3D heatmap volumes fol-
lowing the methods we introduced in Sec ??. We conduct



Table 13. Ablation study on Pose Extraction.

Input GYM NTU-60

Kinect-3D [24] N.A. 89.4

DOPE-3D [21] 76.3 N.A.

VIBE-3D [8] 87.0 N.A.

HRNet-2D [19] 92.0 91.9
MobileNet-2D [6] 89.0 90.2

(a) 2D skeleton v.s. 3D skeleton.

Input GYM

DOPE [21] 76.3

VIBE [8] 87.0

FrameLift [15] 90.0

VideoLift [16] 90.2

HRNet-2D [19] 92.0

(b) Lifted 3D-pose doesn’t help in recognition.

Pose Estimator COCO AP NTU-60

HRNet (Top-Down) 0.746 93.6
HRNet (Bottom-Up) 0.654 93.0

Mobile (Top-Down) 0.646 92.0

(c) Pose Estimation: Top-Down v.s. Bottom-Up.

Human Proposals GYM Mean-Top1

Detection 75.8

Tracking 85.3

GT 92.0

(d) Pose extracted with different boxes.

Input Format GYM Mean-Top1

Coordinate-MobileNet 90.7

Coordinate-HRNet 93.2

Heatmap-MobileNet 92.7

Heatmap-HRNet 93.6

(e) Coordinate v.s. Heatmap.

Table 14. Transferring Ability. Skeleton representations learned
on the large-scale Kinetics400 can transfer to downstream datasets
well. Backbone parameters are frozen for the ‘Linear’ setting.

Policy HMDB51 UCF101

Scratch 58.6 79.1

Linear 64.9 83.1

Finetune 69.3 87.0

Table 15. Comparison with state-of-the-art multi-modality ac-
tion recognition approaches.

Method HMDB51 UCF101

I3D [1] 80.7 98.0

PoTion [2] 43.7 65.2

PoTion + I3D 80.9 98.2

PA3D [22] 55.3 -

PA3D + I3D 82.1 -

PoseConv3D 69.3 87.0
PoseConv3D + I3D 82.7 98.4

experiments on FineGYM to explore how much informa-
tion is lost during the heatmap → coordinate compression.
In Table 13e, we see that for low-quality pose estimators, it
leads to a 2% drop in Mean-Top1. For high-quality ones,
the degradation is more moderate (only a 0.4% Mean-Top1
drop). Thus we choose to store coordinates instead of 3D
heatmap volumes.

4.2. Multi-Modality Results Action Recognition on
UCF101 and HMDB51

In main paper Table 5, we train different PoseConv3D
on UCF101 and HMDB51 from scratch. In this section,

we demonstrate that PoseConv3D can also take advantage
of pretraining on large-scale datasets. We adopt weights
pretrained on Kinetics400 to initialize the PoseConv3D.
Pretraining with skeleton data from the large-scale Kinet-
ics400 benefits the downstream recognition tasks on smaller
datasets, under both ‘Linear’ and ‘Finetune’ paradigms (Ta-
ble 14).

We further compare PoseConv3D with previous state-
of-the-arts of skeleton-based action recognition on UCF101
and HMDB51: PoTion [2] and PA3D [22]. For a fair com-
parison, we fuse the skeleton-based predictions with I3D [1]
predictions, instead of predictions from the more advanced
OmniSource [3]. Table 15 shows that PoseConv3D not
only outperforms other approaches by a large margin on
skeleton-based action recognition, but also leads to better
overall performance after fusing with predictions based on
other modalities.

4.3. Using 3D Skeletons in PoseConv3D

PoseConv3D takes stacked 2D skeleton keypoint
heatmaps as input. Assume only 3D skeletons are avail-
able for a target dataset, one can also use the 3D skele-
tons in PoseConv3D by projecting them to a 2D plane. The
NTURGB+D dataset [17] provides 3D skeleton sequences
collected by Microsoft Kinect v2 sensors [24]. Besides, the
dataset also includes the projection of 3D joints onto the 2D
image coordinate systems. We use the projected 2D skele-
tons of NTU-60 as the input for PoseConv3D and study the
effect.

Table 16 demonstrates the recognition performance of
using projected 2D skeletons in PoseConv3D. Using the
projected 2D skeletons as inputs instead of the original 3D
skeletons, there is a 2% Top-1 accuracy drop for MS-G3D
due to the information lost in 3D → 2D compression. If
both use 2D skeletons as input, PoseConv3D outperforms



Table 16. PoseConv3D with projected 2D poses. We report the
recognition performance of the joint model.

Input + Method Top-1

2D-projection + MS-G3D [14] 86.8

3D-skeleton + MS-G3D [14] 88.81

2D-projection + PoseConv3D 89.2

the GCN-based counterpart by 2.4%, even surpasses the
MS-G3D with 3D skeletons as input by 0.4%, which in-
dicates the great spatiotemporal modeling capability of 3D-
CNN can compensate for the information lost in 3D → 2D
projection.

4.4. Ablation on the Practice for Group Activity
Recognition

In experiments, we find that representing all people with
a single heatmap volume is the best practice for group
activity recognition with PoseConv3D. On the Volleyball
dataset, we have also explored three alternatives that pro-
cess different persons’ heatmaps separately: A. For each
joint, we allocate N channels for N persons. The PoseC-
onv3D input then has N × K channels (instead of K); B.
We generate a 3D heatmap volume (K × T ×H ×W ) for
each person and use PoseConv3D (weights shared among
N persons) to extract the skeleton feature separately. We
use average pooling to aggregate N persons’ features to a
single feature vector; C. On top of B, we insert several (1
to 3) encoder layers (from scratch or with B pre-training)
before the average pooling for inter-person modeling. Fig-
ure 10 provides an illustration of three alternatives. For A,
the high dimensional input leads to severe overfitting. The
Top-1 accuracy is only 75.3%. For B, C, despite the great
amounts of computation (> 13×) consumed, the recogni-
tion performance is not satisfying. At best, B, C achieves
85.7% and 87.9% Top-1 on Volleyball, still much inferior to
accumulating heatmaps (91.3%). Accumulating heatmaps
is a simple and relatively good solution for balancing com-
plexity and effectiveness. More complex designs may lead
to further improvements, which is left to future work.

4.5. Uniform Sampling for RGB-based recognition

Based on the outstanding improvement by uniform sam-
pling on skeleton-based action recognition, we wonder if
this sampling strategy also works for RGB-based action
recognition. Thus we apply uniform sampling to RGB-
based action recognition on NTU-60 [17] and GYM [18].
We use SlowOnly-R50 [5] as the backbone and set the in-
put length as 16 frames. From Table 17, we see that uniform
sampling also outperforms fix-stride sampling by a large

1We rerun the official code of MS-G3D to get this accuracy.
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Figure 10. An illustration (with 4 persons) of the proposed three
alternatives for group activity recognition. Best viewed with 4x
zoom in.

Table 17. Uniform sampling also works for RGB-based ac-
tion recognition. Alls results are for 10-clip testing, except the
‘uniform-16 (1c)’, which uses 1-clip testing.

(a) FineGYM.

Sampling Mean-Top1

16x2 87.9

16x4 88.7

uniform-16 (1c) 91.1
uniform-16 91.6

(b) NTU-60 (X-Sub)

Sampling Top1

16x2 94.9

16x4 95.1

uniform-16 (1c) 95.7
uniform-16 96.1

margin in RGB-based recognition on these two datasets: the
accuracy of uniform sampling with 1-clip testing is better
than the accuracy of fix-stride sampling with 10-clip testing.
We mainly attribute the advantage of uniform sampling to
the highly variable video lengths in these two datasets. On
the contrary, we observe a slight accuracy drop on Kinet-
ics4002 when applying uniform sampling: for SlowOnly-
R50 with input length 8, the Top-1 accuracy drops from
75.6% to 75.2%.

4.6. NTU-60 Error Analysis

On NTU-60 X-Sub split, we achieve 94.1% Top-1 accu-
racy with skeleton-based action recognition, which outper-
forms the current state-of-the-art result by 2.6%. To further
study the failure cases, we first define the confusion score S
of a pair of the action classes i, j as:

S = nij + nji (1)

nij indicates the number of videos belong to the class i but
recognized as class j. In NTU-60, there are 1770 pairs of
action classes in total, while we list the five most confus-

2In Kinetics400, most video clips are of the same temporal length: 10
seconds.



Table 18. Top 5 confusion pairs of skeleton-based action recog-
nition on NTU-60 X-Sub. Multi-modality fusion with RGBPose-
Conv3D improves the recognition performance on confusion pairs
by a lot.

Action1 Action2 SPose SRGB+Pose

Read Play with phone/tablet 67 13

Write Type on a keyboard 57 20

Write Play with phone/tablet 50 5

Take a selfie Point to sth. with finger 48 10

Read Write 44 24

Figure 11. Problems in Kinetics400 Pose Extraction. Left:
Human missing in action ‘kayaking’. Middle: Human skeleton is
too small to be recognized in action ‘diving cliff’. Right: Only
human parts appear, the pose estimator fails (‘washing feet’).

Table 19. Mean class accuracy on the Kinetics-Motion subset.

Method Top1 Acc

Swin-L [13] 92.7

ST-GCN [23] 72.0

PoseConv3D 81.9

Swin-L + PoseConv3D 94.7

ing pairs in Table 18. Most failure cases are of these top-
confusing pairs, e.g., over 27% failure cases are of the top
5 confusion pairs. It is hard to distinguish these pairs of
actions with human skeletons only.

Some confusing pairs can be resolved by exploiting other
modalities such as RGB appearance. If the model success-
fully recognizes the keyboard, then it can distinguish typing
from writing. Table 18 shows that, with multi-modality fu-
sion in RGBPose-Conv3D, the recognition performance on
those confusing pairs improves a lot.

4.7. Why skeleton-based pose estimation performs
poorly on Kinetics400

PoseConv3D with high-quality 2D skeletons improves
the Top-1 accuracy of skeleton-based action recognition on
Kinetics400 from 38.0% to 47.7%. However, the accuracy
on Kinetics400 is still far below the accuracies on other
datasets. Besides the difficulties mentioned in Sec 1, two
more problems will degrade the quality of extracted skele-

ton sequences (Figure 11): 1. Since Kinetics400 is not
human-centric, human skeletons are missing or hard to rec-
ognize in many frames. 2. For the same reason, only small
parts of humans appear in many frames, while the pose es-
timators are easy to fail in this scenario.

We also report the mean class accuracy on Kinetics-
Motion [23] in Table 19, which contains 30 action classes in
Kinetics that are strongly related to body motions. The ac-
curacy of skeleton-based action recognition is much higher
on this subset, increasing from 47.7% to 81.9%. When
combined with the state-of-the-art RGB predictions, the im-
provement is much more significant, increasing from 0.6%
to 2.0%. However, the skeleton-based performance is still
far behind the state-of-the-art RGB-based action recogni-
tion method [13], which achieves 92.7% mean class accu-
racy on Kinetics-Motion. The inferior recognition perfor-
mance indicates that there still needs more future work for
skeleton-based action recognition in the wild.
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