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In the supplementary material, we first present results
for two additional experimental setups in Section A and B.
Then, we provide pseudo-code of our co-learning frame-
work CoSSL in Section C. More ablation studies of our co-
learning framework can be found in Section D. Finally, we
conduct more evaluation at unknown and known shifted test
distributions in Section E.

A. Evaluation under ~; # ~,

The imbalance ratio of labeled data is not always the
same as that of unlabeled data in practice. In this section, we
compare different methods under +; # ~,. Table 1 shows
the results on CIFAR-100 with v; = 50 and ,, = 100 with
two different SSL backbone. In both cases, CoSSL gives
superior performance to other methods.

CIFAR-100 ~; = 50 v, = 100
ReMixMatch 42.07
w/ DARP 43.19
w/ DARP + cRT 46.59
w/ CReST+ 42.31
w/ CReST+ + LA 41.42
w/ CoSSL 47.33
FixMatch 40.47
w/ DARP 41.20
w/ DARP + cRT 43.01
w/ CReST+ 41.20
w/ CReST+ + LA 44.14
w/ CoSSL 45.92

Table 1. Comparison on CIFAR-100 with v; = 50, v, = 100.

B. Evaluation with less number of labeled data

In this section, we provide more evaluation of our
method with less number of labeled data than that of the
main paper. We compare different methods on CIFAR-100

with v = 100. We set the number of labeled data as 50 for
the first class. As is shown in Table 2, CoSSL outperforms
other methods and achieves the best performance.

CIFAR-100 N;=50 CIFAR-100 N;=50
ReMixMatch 27.76  FixMatch 24.00
w/ Re-sample 27.22 w/ Re-sample 25.06
w/ LDAM-DRW 30.22  w/LDAM-DRW 23.30
w/ DARP 28.29  w/DARP 25.02
w/ DARP + cRT 30.13 w/ DARP + cRT 24.55
w/ CReST+ 28.76  w/ CReST+ 25.22
w/ CReST++LA 2832  w/CReST++LA  26.08
w/ CoSSL 31.31 w/ CoSSL 28.42

Table 2. Efficacy of CoSSL with less labeled data on CIFAR-100
with v = 100.

C. CoSSL pseudo-code

We present the complete algorithm of our co-learning
framework processing one batch of labeled and unlabeled
images in algorithm 1.

D. Ablation study

In this section, we provide more ablation results about
different design choices of our method.

Benefits of the co-learning framework. As argued in the
main paper, we attribute the success of CoSSL to four as-
pects: (1) Decoupling representation and classifier while
coupling them closely (Table 3). (2) Classifier helps repre-
sentation via pseudo-labeling rather using gradient directly
(Table 5). (3) Using the balanced classifier i, for pseudo-
label generation (Table 4). (4) Using TFE for classifier
learning (Table 6).

Sampling the fusion factor from a uniform distribution
with lower bound. Here we study the effect of different
from TFE Algorithm. Since the fusion factor A is sampled
from a uniform distribution between g and 1, u controls the



Algorithm 1 Co-learning of representation and classifier

1: Input: Labeled set X = {(X,,yn) :n € (1,...,N)},
unlabeled set U = {um :m o€ (1,..., M)}, feature
encoder g, classifier head in representation learning h,.,
classifier head in classifier learning h., control parame-
ter for fusion factor , momentum coefficient m, batch
size B, total number of training iterations 7'

2 60 =g:9" =g h0 = hy; hY = he

3: fort=0toT — 1do

4
s {xtyf}Et ~ Random sampler(X)
6: {u'}Z,' ~ Random sampler(l()
7
8
9

9! = Pseudo-label(¢f, hl, ul) Vi
10: {Z;, i} = TFE(X, U, &, )
122 ¢t =met + (1 —m)gt

4 Ly =% 30 lon(yl hi(gt(x))

155 Lo=%55F lop(ylhi(gt(ul))

17 L=L.+ Ly + L,

18: gL At BT = Update(gt, hi, h)
19: end for

20: return (7 hT

Benefits of CIFAR-10 CIFAR-100

decoupling 4=50 =100 =150 =20 =50 =100
- 8144 7531 6916 4841 4176 3679

Fix.  twostage 8293 7851 7352 4995 4411 39.54

CoSSL  86.42 82.60 80.24 52.76 47.04 42.09

- 82.57 7694 7330 50.76 4351 3848
ReMix. two-stage 86.43 8227 80.30 54.07 47.25 41.87
CoSSL  87.55 8340 8195 55.01 48.26 43.14

Table 3. Both decoupled approaches (two-stage, CoSSL) show
better results over the joint training. Particularly, our co-learning
achieves the best performance across settings.

Pseudo-label CIFAR-10 CIFAR-100
generation 4=50 =100 =150 ~=20 ~=50 ~=100
Fix. hgsy 8548 8120 7823 5224 4590  40.43

hcr  86.42 82.60 80.24 52.76 47.04 42.09

ReMix. hgsgr 8690 82.88 80.22 54.39 47.81 42.09
hcr 8755 8340 8195 55.01 4826 43.14

Table 4. Benefits of using classifier learning module to generate
pseudo-labels. hgsr denotes the classifier from the representa-
tion learning module, hc 1, denotes the classifier from the classifier
learning module.

CIFAR-10 CIFAR-100
Test Acc.
=50 =100 ~=150 ~=20 ~=50 ~=100
Fix. allow grad 84.29 79.21 7646 5024 4372 39.82

CoSSL 86.42 82.60 80.24 5276 47.04 42.09

ReMix. allowgrad 78.18 69.99 68.12 5428 47.06 42.65
CoSSL 87.55 8340 8195 55.01 4826 43.14

Table 5. Benefits of not updating the encoder from the gradient of
the classifier module.

CIFAR-10 CIFAR-100
=50 =100 ~=150 ~=20 ~=50 ~=100

- 84.24 80.27 77.22 5140 4539 4133
mixUp 85.07 8042 7736 52.01 4585 41.24

Test Acc.  Enhancement

Fix. MFW 85.54 81.77 7791 5205 46.09 41.61

TFE 86.42 82.60 80.24 52.76 47.04 42.09

- 87.06 8224  79.53 5458 47.84 42.60

. mixUp 86.80 83.10 81.75 55.01 47.89 4227
ReMix.

MFW 87.37 8356 8148 5477 4796 4251
TFE 87.55 8340 8195 55.01 4826 43.14

Table 6. Test accuracy of using different classifier learning meth-
ods in CoSSL.

regularization effect of feature blending. A large p indi-
cates less regularization as the newly generated feature will
be dominated by the labeled feature. In the extreme cases,
when . = 1, TFE reduces to vanilla cRT as the unlabeled
portion in the new feature is 0. On the other hand, a small
1 implies strong regularization as the new feature can po-
tentially contain a large portion of unlabeled data while still
using the same label. As is shown by the blue curve in Fig. 1
left, a . with proper amount of regularization needs to be se-
lected to maximize the model performance. While p = 0.6
gives the best result (80.24%), our model is quite robust
within a large range of y. Note that 4 = 0.6 is used as the
default for all the results across datasets (CIFAR, ImageNet,
and Food-101) in the main paper, which also indicates the
robustness of our method.

Furthermore, as is compared in Figure 1 left, sampling
from the other half of the uniform distribution performs
worse for all p but the full range. Since the newly gen-
erated feature shares the class label with its labeled com-
ponent, therefore, it is more beneficial to set A\ closer to
1 by sampling from a uniform distribution between p and
1. Moreover, the best uniform distribution with . = 0.6
outperforms commonly used beta distribution as shown in
Figure 1 right.

Effect of the number of warm-up epochs. Here we study
the effect of the number of warm-up epochs for representa-
tion learning. Using a warm-up for representation learning
can make the model enjoy both high precision of pseudo-
labels in early training, and stronger class-rebalancing in
late training. Similar strategies are also widely used in many
other works [1, 4, 6]. As shown in Fig. 2, warming up
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Figure 1. Left: It is important to make A closer to 1 so that the
blended feature is closer to the labeled feature, thus safer to share
the label. Our method also shows good robustness within a wide
range of u. Right: Comparison with beta distribution.
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Figure 2. Effect of number of warm-up epochs for our method.
Enabling our co-learning at a later epoch is more beneficial.

for longer than 300 epochs gives similar final results, and
400 epochs of warming-up achieves the best test accuracy,
which corresponds to 80% of the training time. Our model
shows good robustness in terms of the warming-up as we
use a warm-up for the first 80% of the training epochs for
all experiments in the main paper and achieve good perfor-
mance.

Effect of the joint training. Here we extend the ablation
study of the benefits of our co-learning framework com-
pared with two-stage approaches. Specifically, we com-
pare our CoSSL with three variants of two-stage methods:
vanilla cRT [3], cRT with mixUp, and our TFE. For all
three two-stage approaches, we first train a complete Fix-
Match for representation learning. Then, keeping the fea-
ture encoder fixed, the classification layer is reinitialized
and trained for 20 epochs. Table 7 summarizes the re-
sults. In most cases, CoSSL outperforms two-stage meth-
ods, which demonstrates the benefits of the joint frame-
work. Moreover, TFE also fits particularly well for imbal-
anced SSL as TFE is in the top-two performing methods
across different settings among two-stage methods.

Class-imbalanced sampler during the classifier training.
Here we study the effect of the class-imbalanced sampler
in TFE under known shifted test distributions. When the
shifted distribution is known prior to the training, we can

. CIFAR-10 CIFAR-100
Ablation
=50 =100 ~=150 ~=20 ~=50 ~=100
FixMatch 81.44 7531 69.16 4841 41.76 36.79
+ cRT 8293 7851 7352 4995 44.11 39.54
+ cRT w/ mixUp 86.16 8194 7750 51.08 4374 39.18
+ TFE 86.83 81.94 7793 52.88 4537 40.79

FixMatch + CoSSL  86.42 82.60 80.24 52.76 47.04 42.09

Table 7. Classification accuracy (%) of two-stage methods com-
pared to our CoSSL. The better performance demonstrates the ef-
fectiveness of our co-learning framework.

leverage this information to improve the performance at
important classes by replacing the class-balanced sampler
in TFE with a sampler following the target distribution.
Specifically, we train our models using class-imbalanced
samplers with various imbalance ratios during the classifier
training, and test them under three known shifted distribu-
tions. We report classwise accuracies on CIFAR-10-LT with
an imbalance ratio of 150 and use FixMatch as the base SSL
method.

Fig. 3 shows the classwise accuracies at known test dis-
tributions with imbalance ratio v = 32, 1, and -32. While
the class-balanced sampler (r=1) gives reasonable perfor-
mance across classes, using class-imbalanced sampler dur-
ing the classifier training can make the model in favor of
head or tail classes. For example, when using a sampler
with a large negative imbalance ratio -64, performance of
tail classes can be improved further. The trend of the head
classes is, however, the opposite, which shows a clear trade-
off. Therefore, depending on the target distribution, an im-
balanced sampler favoring the important classes should be
deployed to improve the overall performance.

Table. 8 summarizes the average class accuracy of
CoSSL trained with different class-imbalanced sampler
under known shifted distributions. Replacing the class-
balanced sampler in TFE with a sampler following the dis-
tribution of imbalance ratio 2 gives large improvement at
positive test imbalance ratios and achieves the best numbers
in most cases.

E. More evaluation at unknown and known
shifted distributions

Here we extend the evaluation of different methods at
shifted test distributions in Section 4.4. We report results
at imbalance ratio v = 100 on CIFAR-10-LT and v = 20,
50 and 100 for CIFAR100-LT. All experiments are run with
the same data split and the training protocol from Section
4.1. We take FixMatch as the base SSL method and test
post-compensation (PC) [2], classifier retraining (cRT) [3],
DARP [4], CReST+ [6], and our CoSSL over a family of
shifted distributions. As PC takes in target distribution p;
to modify the logits at test time, we set p; as the uniform
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Figure 3. Rather than only looking at average class accuracy, this figure shows classwise accuracies of CoSSL. In particular, we train with
different class-imbalanced samplers (r = 64, 16, 1, -16, -64) under three known shifted evaluation settings (left ratio 32, middle 1, right -32).
The train data has an imbalance ratio of 150. In the case of test imbalance ratio of 32 (left figure), we can see that the class-imbalanced
sampler has little effect on the head classes (classes 0, 1, etc) while having a strong influence on the tail classes (classes 9, 8, etc). This can
be explained by the effect that a class-imbalanced sampler with a ratio of e.g. -64 will heavily oversample the tail classes and thus improve
their performance overall. When the test imbalance ratio is further away (middle figure ratio 1, right figure ratio -32) from the train data
imbalance of 150 we can see a similar trend for the tail classes, however, the trend for the head classes is the opposite. Thus there is a clear
trade-off between head and tail classes depending on which class-imbalanced sampler is used for training the classifier. Depending on the

application scenario it might be thus interesting to not only look at average accuracies but more closely at this trade-off.

. . 512 256 150 128 64 32 16 8 4 2 ] 1 | 2 -4 -8 -6 32 -64 <128 256 -512  Mean

Test imbalance ratio
Unknown test-time imbalance ratio
Fix 94.83 9395 93.13 9287 9124 89.11 86.62 8290 7892 7358 | 67.83 | 61.83 5541 49.50 44.46 4037 36.88 33.89 3095 29.04 66.36
Fix + PC 94.63 9395 9330 9295 9154 89.89 87.87 84.89 8205 77.97 | 73.49 | 68.86 63.88 59.45 5570 52.76 50.24 4790 4577 4423 7257
Fix + vanilla cRT 9478 9390 93.17 92.83 9124 8924 86.87 8375 8029 7554 | 70.40 | 65.10 59.47 5436 4986 4635 4339 4081 3834 36.61 69.31
Fix + DARP 95.14 9446 93.73 9350 92.18 90.12 87.70 8439 81.03 76.26 | 71.15 | 66.12 60.99 56.10 5228 48.84 4575 4325 40.79 39.17 70.65
Fix + CReST+ 94.18 9339 92.74 9245 91.05 89.04 86.70 83.52 8020 76.05 | 71.75 | 67.28 62.76 5873 55.68 52.89 50.47 4849 46.61 4554 71.98
Fix + CoSSL 91.73 91.13 90.90 90.60 89.85 89.07 87.95 86.24 84.60 82.61 | 80.40 | 78.39 76.03 74.19 7321 7249 7143 70.64 70.02 69.71 81.06
Known test-time imbalance ratio

Fix + PC 9498 94.00 93.13 92.83 91.16 89.24 87.03 84.00 81.03 77.31 | 73.49 | 70.10 66.79 6421 62.69 61.89 6241 6326 6480 66.50 77.04
Fix + vanilla cRT 95.14 9432 9339 9325 9135 8924 86.73 8345 7985 7504 | 70.40 | 6576 60.65 56.67 5381 52.04 51.07 51.09 4998 51.60 72.24
Fix + DARP + PC 95.19 9446 93.73 9354 9232 9032 88.17 8553 83.00 79.96 | 76.82 | 7433 72.05 70.88 7037 70.53 7098 7139 72.19 73.07 80.94
Fix + CReST+ + PC 9448 9344 9274 9249 91.09 89.17 8720 8475 82.60 79.86 | 77.74 | 76.09 7441 7403 7440 7540 7638 7722 78.66 80.29 82.62
Fix + CoSSL + PC 92.83 91.59 9090 90.31 8922 8793 8642 8501 8400 82.57 | 82.00 | 81.70 81.72 81.66 8294 84.66 8577 86.83 87.58 88.31 86.20
Fix + CoSSL(r=2) + PC ~ 95.24 9427 9395 93.67 92.51 91.07 89.23 86.89 85.05 82.64 | 80.87 | 79.95 78.89 7856 79.49 8132 82.74 8423 8559 87.16 86.17
Fix + CoSSL(r=4) + PC 94.88 94.04 9347 93.16 92.10 90.61 88.81 8641 8462 82.65 | 80.87 | 79.89 78.96 7870 79.77 8139 82.03 83.60 8494 86.56 85.87
Fix + CoSSL(r=16) + PC  95.04 94.18 93.77 93.29 9221 90.68 89.29 86.98 8491 8274 | 80.98 | 80.00 78.61 7870 79.80 81.22 82.52 83.77 8490 86.41 86.00

Table 8. Classification accuracy (%) on CIFAR-10-LT with imbalance ratio v = 150. We test different methods on top of FixMatch [5] for
known and unknown shifted distributions. Post-compensation (PC) [2] is deployed to utilize the information of the known test distribution.

distribution and the used test distribution for unknown and
known distributions, respectively. For cRT, we reinitialize
and train the classification layer for 20 epochs while keep-
ing the feature encoder fixed after the representation learn-
ing.

Table 9, 10, 11, 12 show the evaluation results. For un-
known distributions, while compromising at some positive
ratios, CoSSL outperforms other methods by large margins
at negative ratios, which leads to the overall higher mean
accuracy across different settings. This indicates that our
method addresses the imbalance better than other methods
that only perform well at distributions closer to the ones
used during the training. Similarly, we achieve a more
balanced performance across various imbalance ratios for
known distributions as well.
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. . 512 256 128 100 64 32 16 8 4 2 ‘ 1 ‘ -2 -4 -8 -16 -32 -64 -128 256 -512  Mean
Test imbalance ratio

Unknown test-time imbalance ratio
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Known test-time imbalance ratio
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Table 9. Classification accuracy (%) on CIFAR-10-LT with imbalance ratio v = 100. We test different methods on top of FixMatch [5]
for known and unknown test-time distributions. Post-compensation (PC) [2] is deployed to utilize the information of the known test
distribution.

. : 64 32 20 16 8 4 2 |1 ] 2 -4 -8 -16 32 64 Mean

Test imbalance ratio
Unknown test-time imbalance ratio
Fix 69.07 67.18 6525 6456 61.02 57.15 53.01 \ 48.30 \ 43.89 39.53 3527 31.23 28.12 25.60 49.23
Fix + PC 6741 6592 6443 63.87 6092 5790 54.44 | 50.46 | 46.66 4298 39.30 35.74 33.07 30.72 50.99
Fix + vanilla cRT 66.64 6523 63.66 63.15 60.39 5792 5427 | 50.41 | 46.94 43.35 39.80 36.58 34.15 32.12 51.04
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Fix + CoSSL 65.87 6527 63.95 6351 6140 59.07 56.21 | 53.11 | 50.08 47.06 44.31 4130 39.60 37.84 53.47
Known test-time imbalance ratio

Fix + PC 69.28 67.08 6525 6462 6097 57.81 5421 | 50.46 | 47.14 4430 41.60 39.68 3949 39.42 5295
Fix + vanilla cRT 6792 66.14 6439 6354 6044 57.84 5378 | 50.41 | 47.29 4439 42.15 40.37 39.03 38.61 52.59
Fix + DARP + PC 69.84 68.01 6596 6542 6238 58.74 5596 | 52.36 | 49.76 46.72 4495 4258 41.88 41.55 54.72
Fix + CReST++PC 66.51 64.80 63.41 6324 60.82 5855 55.61 | 53.06 | 50.91 49.18 47.83 46.76 4697 46.67 5531
Fix + CoSSL + PC 67.11 6570 63.95 6330 60.58 58.01 55.00 | 52.64 | 51.00 49.25 48.00 46.79 47.08 47.31 55.41
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. . 64 50 32 16 8 4 2 | 1 ] 2 -4 -8  -16 32 -64 Mean

Test imbalance ratio
Unknown test-time imbalance ratio
Fix 66.30 65.69 64.08 6091 56.63 5197 47.15 \ 41.83 \ 3628 31.32 2620 21.95 19.13 1625 43.26
Fix + PC 65.61 65.16 63.83 6097 57.35 5341 49.09 | 4430 | 39.51 34.87 30.38 26.46 23.86 21.46 4545
Fix + vanilla cRT 64.80 6428 63.00 60.08 56.75 53.06 48.79 | 44.52 | 39.63 34.84 30.59 26.84 24.40 22.10 4526
Fix + DARP 66.51 6597 6437 61.12 57.16 5240 47.32 \ 42.14 \ 36.65 31.33 2654 2231 1921 1651 43.54
Fix + CReST+ 65.19 6456 63.29 60.70 57.20 53.35 4894 4466 39.84 3545 3136 27.83 25.09 2235 45.70
Fix + CoSSL 63.91 63.72 62.78 6029 57.54 5430 50.99 \ 47.12 \ 42.69 38.19 34.16 30.64 2798 2581 47.15
Known test-time imbalance ratio
Fix + PC 66.25 65.69 64.15 6094 57.01 5291 4876 | 4430 | 40.15 36.08 3292 2998 28.66 27.90 46.84
Fix + vanilla cRT 66.17 65.81 6397 61.06 57.11 53.06 48.76 | 44.52 | 40.41 36.35 3299 3099 29.82 29.61 47.19
Fix + DARP + PC 66.55 6597 64.55 61.27 57.52 53.19 4877 | 4476 | 40.71 36.72 33.66 30.90 29.57 2850 47.33
Fix + CReST++PC 65.19 64.56 63.10 60.62 57.37 53.86 49.85 | 46.62 | 42.69 39.75 3745 3529 3401 33.06 43.82
Fix + CoSSL + PC 6429 6372 6235 5948 5632 5346 5039 | 47.29 | 44.54 41.65 39.51 37.56 37.69 38.18 49.74
Table 11. Classification accuracy (%) on CIFAR-100-LT with imbalance ratio v = 50.

) 100 64 32 16 8 4 2 | 1 ] 2 -4 -8 -16 32 -64 Mean

Test imbalance ratio
Unknown test-time imbalance ratio
Fix 67.25 6549 6242 5861 53770 4842 4287 \ 37.09 \ 31.17 2578 20.67 16.45 13.18 1024 39.52
Fix + PC 66.26 64.72 62.06 5852 5430 49.55 4459 | 39.22 | 33.66 28.52 2347 1935 16.14 1331 4098
Fix + vanilla cRT 65.18 63.78 61.26 58.05 54.04 49.57 44.61 | 39.73 | 33.97 28.78 2393 2024 17.08 1429 41.04
Fix + DARP 66.21 64.63 6191 5820 53.61 4842 43.09 | 37.44 | 31.50 26.34 21.67 17.41 1397 11.18 39.68
Fix + CReST+ 65.65 6438 61.88 5894 54.62 4993 4481 | 39.60 | 3431 29.58 2438 20.01 16.68 13.48 41.30
Fix + CoSSL 64.15 6293 61.23 5847 5495 51.17 46.58 | 42.22 | 36.97 32.17 27.69 2425 20.83 17.83 42.96
Known test-time imbalance ratio

Fix + PC 67.25 6544 6242 5876 54.06 4929 4438 | 39.22 | 33.97 29.53 25.13 22.16 19.89 18.05 42.11
Fix + vanilla cRT 66.73 6476 62.02 58.14 53.92 4931 4432 | 39.73 | 3437 29.68 2534 2251 20.32 19.03 42.16
Fix + DARP + PC 66.21 64.72 62.06 5835 53.87 4948 4452 | 40.00 | 35.08 30.91 27.14 23.89 2191 20.01 42.73
Fix + CReST++PC 65.65 6429 61.81 59.00 55.26 50.71 4595 | 41.56 | 37.09 33.25 29.68 27.08 2549 2432 4437
Fix + CoSSL + PC 64.15 6237 60.14 5745 53.54 49.89 4552 | 42.27 | 38.25 34.99 32.63 3099 29.89 2837 45.03

Table 12. Classification accuracy (%) on CIFAR-100-LT with imbalance ratio v = 100.



	. Evaluation under l =u
	. Evaluation with less number of labeled data
	. CoSSL pseudo-code
	. Ablation study
	. More evaluation at unknown and known shifted distributions

