
CoSSL: Co-Learning of Representation and Classifier for
Imbalanced Semi-Supervised Learning

Yue Fan Dengxin Dai Anna Kukleva Bernt Schiele
{yfan, ddai, akukleva, schiele}@mpi-inf.mpg.de

Max Planck Institute for Informatics, Saarbrücken, Germany
Saarland Informatics Campus

In the supplementary material, we first present results
for two additional experimental setups in Section A and B.
Then, we provide pseudo-code of our co-learning frame-
work CoSSL in Section C. More ablation studies of our co-
learning framework can be found in Section D. Finally, we
conduct more evaluation at unknown and known shifted test
distributions in Section E.

A. Evaluation under γl ̸= γu

The imbalance ratio of labeled data is not always the
same as that of unlabeled data in practice. In this section, we
compare different methods under γl ̸= γu. Table 1 shows
the results on CIFAR-100 with γl = 50 and γu = 100 with
two different SSL backbone. In both cases, CoSSL gives
superior performance to other methods.

CIFAR-100 γl = 50 γl = 100

ReMixMatch 42.07
w/ DARP 43.19
w/ DARP + cRT 46.59
w/ CReST+ 42.31
w/ CReST+ + LA 41.42
w/ CoSSL 47.33

FixMatch 40.47
w/ DARP 41.20
w/ DARP + cRT 43.01
w/ CReST+ 41.20
w/ CReST+ + LA 44.14
w/ CoSSL 45.92

Table 1. Comparison on CIFAR-100 with γl = 50, γu = 100.

B. Evaluation with less number of labeled data
In this section, we provide more evaluation of our

method with less number of labeled data than that of the
main paper. We compare different methods on CIFAR-100

with γ = 100. We set the number of labeled data as 50 for
the first class. As is shown in Table 2, CoSSL outperforms
other methods and achieves the best performance.

CIFAR-100 N1=50
ReMixMatch 27.76
w/ Re-sample 27.22
w/ LDAM-DRW 30.22
w/ DARP 28.29
w/ DARP + cRT 30.13
w/ CReST+ 28.76
w/ CReST+ + LA 28.32
w/ CoSSL 31.31

CIFAR-100 N1=50
FixMatch 24.00
w/ Re-sample 25.06
w/ LDAM-DRW 23.30
w/ DARP 25.02
w/ DARP + cRT 24.55
w/ CReST+ 25.22
w/ CReST+ + LA 26.08
w/ CoSSL 28.42

Table 2. Efficacy of CoSSL with less labeled data on CIFAR-100
with γ = 100.

C. CoSSL pseudo-code

We present the complete algorithm of our co-learning
framework processing one batch of labeled and unlabeled
images in algorithm 1.

D. Ablation study

In this section, we provide more ablation results about
different design choices of our method.
Benefits of the co-learning framework. As argued in the
main paper, we attribute the success of CoSSL to four as-
pects: (1) Decoupling representation and classifier while
coupling them closely (Table 3). (2) Classifier helps repre-
sentation via pseudo-labeling rather using gradient directly
(Table 5). (3) Using the balanced classifier hCL for pseudo-
label generation (Table 4). (4) Using TFE for classifier
learning (Table 6).
Sampling the fusion factor from a uniform distribution
with lower bound. Here we study the effect of different µ
from TFE Algorithm. Since the fusion factor λ is sampled
from a uniform distribution between µ and 1, µ controls the
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Algorithm 1 Co-learning of representation and classifier

1: Input: Labeled set X =
{
(xn, yn) : n ∈ (1, . . . , N)

}
,

unlabeled set U =
{

um : m ∈ (1, . . . ,M)
}

, feature
encoder g, classifier head in representation learning hr,
classifier head in classifier learning hc, control parame-
ter for fusion factor µ, momentum coefficient m, batch
size B, total number of training iterations T

2: ξ0 = g; g0 = g; h0
r = hr; h0

c = hc

3: for t = 0 to T − 1 do
4: // Sample labeled and unlabeled data for SSL
5: {xt

i, y
t
i}

B−1
i=0 ∼ Random sampler(X )

6: {ut
i}

B−1
i=0 ∼ Random sampler(U)

7: // Pseudo-labeling with EMA encoder and classifier
8: ŷti = Pseudo-label(ξt, ht

c, ut
i) ∀i

9: // Apply TFE
10: {z̃i, ỹi}B−1

i=0 = TFE(X , U , ξt, µ)
11: // EMA update of the encoder
12: ξt+1 = mξt + (1−m)gt

13: // Compute losses and update the model
14: Lx = 1

B

∑B
i=1 ℓCE(y

t
i , h

t
r(g

t(xt
i))

15: Lu = 1
B

∑B
i=1 ℓCE(ŷ

t
i , h

t
r(g

t(ut
i))

16: Lc =
1
B

∑B
i=1 ℓCE(ỹ

t
i , h

t
c(z̃

t
i))

17: L = Lc + Lx + Lu

18: gt+1, ht+1
r , ht+1

c = Update(gt, ht
r, ht

c)
19: end for
20: return ξT , hT

c // Model for evaluation

Benefits of
decoupling

CIFAR-10 CIFAR-100

γ=50 γ=100 γ=150 γ=20 γ=50 γ=100

Fix.
- 81.44 75.31 69.16 48.41 41.76 36.79

two-stage 82.93 78.51 73.52 49.95 44.11 39.54
CoSSL 86.42 82.60 80.24 52.76 47.04 42.09

ReMix.
- 82.57 76.94 73.30 50.76 43.51 38.48

two-stage 86.43 82.27 80.30 54.07 47.25 41.87
CoSSL 87.55 83.40 81.95 55.01 48.26 43.14

Table 3. Both decoupled approaches (two-stage, CoSSL) show
better results over the joint training. Particularly, our co-learning
achieves the best performance across settings.

Pseudo-label
generation

CIFAR-10 CIFAR-100

γ=50 γ=100 γ=150 γ=20 γ=50 γ=100

Fix. hSSL 85.48 81.20 78.23 52.24 45.90 40.43
hCL 86.42 82.60 80.24 52.76 47.04 42.09

ReMix. hSSL 86.90 82.88 80.22 54.39 47.81 42.09
hCL 87.55 83.40 81.95 55.01 48.26 43.14

Table 4. Benefits of using classifier learning module to generate
pseudo-labels. hSSL denotes the classifier from the representa-
tion learning module, hCL denotes the classifier from the classifier
learning module.

Test Acc. CIFAR-10 CIFAR-100

γ=50 γ=100 γ=150 γ=20 γ=50 γ=100

Fix. allow grad 84.29 79.21 76.46 50.24 43.72 39.82
CoSSL 86.42 82.60 80.24 52.76 47.04 42.09

ReMix. allow grad 78.18 69.99 68.12 54.28 47.06 42.65
CoSSL 87.55 83.40 81.95 55.01 48.26 43.14

Table 5. Benefits of not updating the encoder from the gradient of
the classifier module.

Test Acc. Enhancement CIFAR-10 CIFAR-100

γ=50 γ=100 γ=150 γ=20 γ=50 γ=100

Fix.

- 84.24 80.27 77.22 51.40 45.39 41.33
mixUp 85.07 80.42 77.36 52.01 45.85 41.24
MFW 85.54 81.77 77.91 52.05 46.09 41.61
TFE 86.42 82.60 80.24 52.76 47.04 42.09

ReMix.

- 87.06 82.24 79.53 54.58 47.84 42.60
mixUp 86.80 83.10 81.75 55.01 47.89 42.27
MFW 87.37 83.56 81.48 54.77 47.96 42.51
TFE 87.55 83.40 81.95 55.01 48.26 43.14

Table 6. Test accuracy of using different classifier learning meth-
ods in CoSSL.

regularization effect of feature blending. A large µ indi-
cates less regularization as the newly generated feature will
be dominated by the labeled feature. In the extreme cases,
when µ = 1, TFE reduces to vanilla cRT as the unlabeled
portion in the new feature is 0. On the other hand, a small
µ implies strong regularization as the new feature can po-
tentially contain a large portion of unlabeled data while still
using the same label. As is shown by the blue curve in Fig. 1
left, a µ with proper amount of regularization needs to be se-
lected to maximize the model performance. While µ = 0.6
gives the best result (80.24%), our model is quite robust
within a large range of µ. Note that µ = 0.6 is used as the
default for all the results across datasets (CIFAR, ImageNet,
and Food-101) in the main paper, which also indicates the
robustness of our method.

Furthermore, as is compared in Figure 1 left, sampling
from the other half of the uniform distribution performs
worse for all µ but the full range. Since the newly gen-
erated feature shares the class label with its labeled com-
ponent, therefore, it is more beneficial to set λ closer to
1 by sampling from a uniform distribution between µ and
1. Moreover, the best uniform distribution with µ = 0.6
outperforms commonly used beta distribution as shown in
Figure 1 right.
Effect of the number of warm-up epochs. Here we study
the effect of the number of warm-up epochs for representa-
tion learning. Using a warm-up for representation learning
can make the model enjoy both high precision of pseudo-
labels in early training, and stronger class-rebalancing in
late training. Similar strategies are also widely used in many
other works [1, 4, 6]. As shown in Fig. 2, warming up
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Figure 1. Left: It is important to make λ closer to 1 so that the
blended feature is closer to the labeled feature, thus safer to share
the label. Our method also shows good robustness within a wide
range of µ. Right: Comparison with beta distribution.

Figure 2. Effect of number of warm-up epochs for our method.
Enabling our co-learning at a later epoch is more beneficial.

for longer than 300 epochs gives similar final results, and
400 epochs of warming-up achieves the best test accuracy,
which corresponds to 80% of the training time. Our model
shows good robustness in terms of the warming-up as we
use a warm-up for the first 80% of the training epochs for
all experiments in the main paper and achieve good perfor-
mance.

Effect of the joint training. Here we extend the ablation
study of the benefits of our co-learning framework com-
pared with two-stage approaches. Specifically, we com-
pare our CoSSL with three variants of two-stage methods:
vanilla cRT [3], cRT with mixUp, and our TFE. For all
three two-stage approaches, we first train a complete Fix-
Match for representation learning. Then, keeping the fea-
ture encoder fixed, the classification layer is reinitialized
and trained for 20 epochs. Table 7 summarizes the re-
sults. In most cases, CoSSL outperforms two-stage meth-
ods, which demonstrates the benefits of the joint frame-
work. Moreover, TFE also fits particularly well for imbal-
anced SSL as TFE is in the top-two performing methods
across different settings among two-stage methods.

Class-imbalanced sampler during the classifier training.
Here we study the effect of the class-imbalanced sampler
in TFE under known shifted test distributions. When the
shifted distribution is known prior to the training, we can

Ablation CIFAR-10 CIFAR-100

γ=50 γ=100 γ=150 γ=20 γ=50 γ=100

FixMatch 81.44 75.31 69.16 48.41 41.76 36.79
+ cRT 82.93 78.51 73.52 49.95 44.11 39.54
+ cRT w/ mixUp 86.16 81.94 77.50 51.08 43.74 39.18
+ TFE 86.83 81.94 77.93 52.88 45.37 40.79

FixMatch + CoSSL 86.42 82.60 80.24 52.76 47.04 42.09

Table 7. Classification accuracy (%) of two-stage methods com-
pared to our CoSSL. The better performance demonstrates the ef-
fectiveness of our co-learning framework.

leverage this information to improve the performance at
important classes by replacing the class-balanced sampler
in TFE with a sampler following the target distribution.
Specifically, we train our models using class-imbalanced
samplers with various imbalance ratios during the classifier
training, and test them under three known shifted distribu-
tions. We report classwise accuracies on CIFAR-10-LT with
an imbalance ratio of 150 and use FixMatch as the base SSL
method.

Fig. 3 shows the classwise accuracies at known test dis-
tributions with imbalance ratio γ = 32, 1, and -32. While
the class-balanced sampler (r=1) gives reasonable perfor-
mance across classes, using class-imbalanced sampler dur-
ing the classifier training can make the model in favor of
head or tail classes. For example, when using a sampler
with a large negative imbalance ratio -64, performance of
tail classes can be improved further. The trend of the head
classes is, however, the opposite, which shows a clear trade-
off. Therefore, depending on the target distribution, an im-
balanced sampler favoring the important classes should be
deployed to improve the overall performance.

Table. 8 summarizes the average class accuracy of
CoSSL trained with different class-imbalanced sampler
under known shifted distributions. Replacing the class-
balanced sampler in TFE with a sampler following the dis-
tribution of imbalance ratio 2 gives large improvement at
positive test imbalance ratios and achieves the best numbers
in most cases.

E. More evaluation at unknown and known
shifted distributions

Here we extend the evaluation of different methods at
shifted test distributions in Section 4.4. We report results
at imbalance ratio γ = 100 on CIFAR-10-LT and γ = 20,
50 and 100 for CIFAR100-LT. All experiments are run with
the same data split and the training protocol from Section
4.1. We take FixMatch as the base SSL method and test
post-compensation (PC) [2], classifier retraining (cRT) [3],
DARP [4], CReST+ [6], and our CoSSL over a family of
shifted distributions. As PC takes in target distribution pt
to modify the logits at test time, we set pt as the uniform
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Figure 3. Rather than only looking at average class accuracy, this figure shows classwise accuracies of CoSSL. In particular, we train with
different class-imbalanced samplers (r = 64, 16, 1, -16, -64) under three known shifted evaluation settings (left ratio 32, middle 1, right -32).
The train data has an imbalance ratio of 150. In the case of test imbalance ratio of 32 (left figure), we can see that the class-imbalanced
sampler has little effect on the head classes (classes 0, 1, etc) while having a strong influence on the tail classes (classes 9, 8, etc). This can
be explained by the effect that a class-imbalanced sampler with a ratio of e.g. -64 will heavily oversample the tail classes and thus improve
their performance overall. When the test imbalance ratio is further away (middle figure ratio 1, right figure ratio -32) from the train data
imbalance of 150 we can see a similar trend for the tail classes, however, the trend for the head classes is the opposite. Thus there is a clear
trade-off between head and tail classes depending on which class-imbalanced sampler is used for training the classifier. Depending on the
application scenario it might be thus interesting to not only look at average accuracies but more closely at this trade-off.

Test imbalance ratio 512 256 150 128 64 32 16 8 4 2 1 -2 -4 -8 -16 -32 -64 -128 -256 -512 Mean

Unknown test-time imbalance ratio

Fix 94.83 93.95 93.13 92.87 91.24 89.11 86.62 82.90 78.92 73.58 67.83 61.83 55.41 49.50 44.46 40.37 36.88 33.89 30.95 29.04 66.36

Fix + PC 94.63 93.95 93.30 92.95 91.54 89.89 87.87 84.89 82.05 77.97 73.49 68.86 63.88 59.45 55.70 52.76 50.24 47.90 45.77 44.23 72.57
Fix + vanilla cRT 94.78 93.90 93.17 92.83 91.24 89.24 86.87 83.75 80.29 75.54 70.40 65.10 59.47 54.36 49.86 46.35 43.39 40.81 38.34 36.61 69.31

Fix + DARP 95.14 94.46 93.73 93.50 92.18 90.12 87.70 84.39 81.03 76.26 71.15 66.12 60.99 56.10 52.28 48.84 45.75 43.25 40.79 39.17 70.65
Fix + CReST+ 94.18 93.39 92.74 92.45 91.05 89.04 86.70 83.52 80.20 76.05 71.75 67.28 62.76 58.73 55.68 52.89 50.47 48.49 46.61 45.54 71.98
Fix + CoSSL 91.73 91.13 90.90 90.60 89.85 89.07 87.95 86.24 84.60 82.61 80.40 78.39 76.03 74.19 73.21 72.49 71.43 70.64 70.02 69.71 81.06

Known test-time imbalance ratio

Fix + PC 94.98 94.00 93.13 92.83 91.16 89.24 87.03 84.00 81.03 77.31 73.49 70.10 66.79 64.21 62.69 61.89 62.41 63.26 64.80 66.50 77.04
Fix + vanilla cRT 95.14 94.32 93.39 93.25 91.35 89.24 86.73 83.45 79.85 75.04 70.40 65.76 60.65 56.67 53.81 52.04 51.07 51.09 49.98 51.60 72.24
Fix + DARP + PC 95.19 94.46 93.73 93.54 92.32 90.32 88.17 85.53 83.00 79.96 76.82 74.33 72.05 70.88 70.37 70.53 70.98 71.39 72.19 73.07 80.94
Fix + CReST+ + PC 94.48 93.44 92.74 92.49 91.09 89.17 87.20 84.75 82.60 79.86 77.74 76.09 74.41 74.03 74.40 75.40 76.38 77.22 78.66 80.29 82.62
Fix + CoSSL + PC 92.83 91.59 90.90 90.31 89.22 87.93 86.42 85.01 84.00 82.57 82.00 81.70 81.72 81.66 82.94 84.66 85.77 86.83 87.58 88.31 86.20

Fix + CoSSL(r=2) + PC 95.24 94.27 93.95 93.67 92.51 91.07 89.23 86.89 85.05 82.64 80.87 79.95 78.89 78.56 79.49 81.32 82.74 84.23 85.59 87.16 86.17
Fix + CoSSL(r=4) + PC 94.88 94.04 93.47 93.16 92.10 90.61 88.81 86.41 84.62 82.65 80.87 79.89 78.96 78.70 79.77 81.39 82.03 83.60 84.94 86.56 85.87
Fix + CoSSL(r=16) + PC 95.04 94.18 93.77 93.29 92.21 90.68 89.29 86.98 84.91 82.74 80.98 80.00 78.61 78.70 79.80 81.22 82.52 83.77 84.90 86.41 86.00

Table 8. Classification accuracy (%) on CIFAR-10-LT with imbalance ratio γ = 150. We test different methods on top of FixMatch [5] for
known and unknown shifted distributions. Post-compensation (PC) [2] is deployed to utilize the information of the known test distribution.

distribution and the used test distribution for unknown and
known distributions, respectively. For cRT, we reinitialize
and train the classification layer for 20 epochs while keep-
ing the feature encoder fixed after the representation learn-
ing.

Table 9, 10, 11, 12 show the evaluation results. For un-
known distributions, while compromising at some positive
ratios, CoSSL outperforms other methods by large margins
at negative ratios, which leads to the overall higher mean
accuracy across different settings. This indicates that our
method addresses the imbalance better than other methods
that only perform well at distributions closer to the ones
used during the training. Similarly, we achieve a more
balanced performance across various imbalance ratios for
known distributions as well.
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Fix + vanilla cRT 64.80 64.28 63.00 60.08 56.75 53.06 48.79 44.52 39.63 34.84 30.59 26.84 24.40 22.10 45.26

Fix + DARP 66.51 65.97 64.37 61.12 57.16 52.40 47.32 42.14 36.65 31.33 26.54 22.31 19.21 16.51 43.54
Fix + CReST+ 65.19 64.56 63.29 60.70 57.20 53.35 48.94 44.66 39.84 35.45 31.36 27.83 25.09 22.35 45.70
Fix + CoSSL 63.91 63.72 62.78 60.29 57.54 54.30 50.99 47.12 42.69 38.19 34.16 30.64 27.98 25.81 47.15

Known test-time imbalance ratio

Fix + PC 66.25 65.69 64.15 60.94 57.01 52.91 48.76 44.30 40.15 36.08 32.92 29.98 28.66 27.90 46.84
Fix + vanilla cRT 66.17 65.81 63.97 61.06 57.11 53.06 48.76 44.52 40.41 36.35 32.99 30.99 29.82 29.61 47.19
Fix + DARP + PC 66.55 65.97 64.55 61.27 57.52 53.19 48.77 44.76 40.71 36.72 33.66 30.90 29.57 28.50 47.33
Fix + CReST+ + PC 65.19 64.56 63.10 60.62 57.37 53.86 49.85 46.62 42.69 39.75 37.45 35.29 34.01 33.06 48.82
Fix + CoSSL + PC 64.29 63.72 62.35 59.48 56.32 53.46 50.39 47.29 44.54 41.65 39.51 37.56 37.69 38.18 49.74

Table 11. Classification accuracy (%) on CIFAR-100-LT with imbalance ratio γ = 50.

Test imbalance ratio 100 64 32 16 8 4 2 1 -2 -4 -8 -16 -32 -64 Mean

Unknown test-time imbalance ratio

Fix 67.25 65.49 62.42 58.61 53.70 48.42 42.87 37.09 31.17 25.78 20.67 16.45 13.18 10.24 39.52

Fix + PC 66.26 64.72 62.06 58.52 54.30 49.55 44.59 39.22 33.66 28.52 23.47 19.35 16.14 13.31 40.98
Fix + vanilla cRT 65.18 63.78 61.26 58.05 54.04 49.57 44.61 39.73 33.97 28.78 23.93 20.24 17.08 14.29 41.04

Fix + DARP 66.21 64.63 61.91 58.20 53.61 48.42 43.09 37.44 31.50 26.34 21.67 17.41 13.97 11.18 39.68
Fix + CReST+ 65.65 64.38 61.88 58.94 54.62 49.93 44.81 39.60 34.31 29.58 24.38 20.01 16.68 13.48 41.30
Fix + CoSSL 64.15 62.93 61.23 58.47 54.95 51.17 46.58 42.22 36.97 32.17 27.69 24.25 20.83 17.83 42.96

Known test-time imbalance ratio

Fix + PC 67.25 65.44 62.42 58.76 54.06 49.29 44.38 39.22 33.97 29.53 25.13 22.16 19.89 18.05 42.11
Fix + vanilla cRT 66.73 64.76 62.02 58.14 53.92 49.31 44.32 39.73 34.37 29.68 25.34 22.51 20.32 19.03 42.16
Fix + DARP + PC 66.21 64.72 62.06 58.35 53.87 49.48 44.52 40.00 35.08 30.91 27.14 23.89 21.91 20.01 42.73
Fix + CReST+ + PC 65.65 64.29 61.81 59.00 55.26 50.71 45.95 41.56 37.09 33.25 29.68 27.08 25.49 24.32 44.37
Fix + CoSSL + PC 64.15 62.37 60.14 57.45 53.54 49.89 45.52 42.27 38.25 34.99 32.63 30.99 29.89 28.37 45.03

Table 12. Classification accuracy (%) on CIFAR-100-LT with imbalance ratio γ = 100.
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