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Abstract

In this supplementary material, we first derive a general
parametric form of bilateral motion field (BMF) by consid-
ering the readout time ratio, and then justify our problem
setup. Next, we provide thorough analyses to our ABMF
model, occlusion reasoning, and motion enhancement. Af-
terward, we show additional experimental results on RS
correction, intermediate flow, generalization, and GS video
recovery, which fully demonstrates the superiority of our
pipeline. We also include a video demo to present dynamic
GS video reconstruction results. Additional details of the
loss function are then added. Furthermore, we report a par-
tial ablation study of CVR*. At last, several failure cases
are given to look forward to possible future research.

1. Instructions on Problem Setup
In this section, we show a detailed derivation of the gen-

eral parameterization of BMF in the time dimension, fol-
lowed by an explanation of our problem setup.

1.1. General formulation of BMF
We first give a brief description of the connection be-

tween the motion field U0→s and the optical flow F0→1 by
accounting for the first RS frame Ir0 as an example. Since
this does not contain our contribution, we only give the nec-
essary details to follow the derivation below. More details
of this connection can be found in [2]. Suppose that to es-
timate U0→s that warps each pixel (e.g. x in scanline κ) of
Ir0 to the GS counterpart corresponding to its scanline s, this
connection under the constant velocity motion model can be
formulated as:

U0→s(x) = C0→s(x) · F0→1(x), (1)

where

C0→s(x) =
γ(s− κ)(h− γπv)

h2
, (2)
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denotes the forward correction map. Here, γ ∈ (0, 1] is the
readout time ratio [17], h is the number of scanlines, and πv

represents the latent inter-GS-frame vertical optical flow.
Next, we extend it to the time domain and derive a more

general formulation than that in the main paper, i.e. γ will
be taken into account. According to the definition in the
main paper, the one-to-one correspondence between time t
and scanline s will satisfy

t =
γ

h

(
s− h

2

)
. (3)

It is easy to verify that the central scanlines of Ir0 and Ir1
correspond to time instances 0 and 1, respectively. Note
that the first scanline of Ir0 will coincide with time −γ

2 .
Assume that t ∈ [0, 1] corresponds to the scanline s to

be restored, and τ0 ∈ [−γ
2 ,

γ
2 ] corresponds to the exposure

time of scanline κ of Ir0, we can obtain t − τ0 � γ(s−κ)
h .

Further combining with Eq. (2) yields

C0→t(x) =
(t− τ0)(h− γπv)

h
. (4)

Similarly, the backward correction map that accounts for
the second RS frame Ir1 with τ1 ∈ [1 − γ

2 , 1 + γ
2 ] can be

defined as:

C1→t(x) =
(τ1 − t)(h+ γπ′

v)

h
. (5)

Note that Eqs. (4) and (5) model the bilateral correction
map through the time paradigm in a general sense. In this
way, the general parametric form of BMF is modeled. This
generality is reflected by the fact that, unlike Eq. (5) in the
main paper, we get τ0 ∈ [−γ

2 ,
γ
2 ] and τ1 ∈ [1 − γ

2 , 1 + γ
2 ]

instead of τ0 ∈ [−0.5, 0.5] and τ1 ∈ [0.5, 1.5]. This is
because we assume γ = 1 in our problem setup. In the
following, we will explain the feasibility of this setup.

1.2. Feasibility analysis of our problem setup

Our problem setup with γ = 1 is based on three main
reasons. Firstly, the Carla-RS and Fastec-RS datasets pro-
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posed by [8] are the only available RS correction bench-
mark datasets. And they are constructed by using the as-
sumption of γ = 1. Since we leverage these two datasets to
train our network, this setup can also be considered as we
use γ = 1 in advance. Secondly, as manifested by [2, 3, 8]
and our experiments, the trained deep learning model based
on these two datasets can be successfully generalized to RS
data acquired by real cameras (i.e. γ may not be equal to
1). Also, γ is directly set to 1 in [4, 18] to correct real RS
images, which can avoid the non-trivial readout calibration.
These studies demonstrate that assuming γ = 1 is generally
feasible for modeling RS correction problems. Thirdly, this
setup can facilitate temporally tractable frame interpolation
between two consecutive RS images. Note that we derive
the general parameterization of BMF in Subsec. 1.1, which
will help the future exploration of more general RS-based
video reconstruction tasks (e.g. with extremely small γ).

2. Additional Architecture Analyses
In this section, we provide more in-depth analyses of our

method in terms of the proposed ABMF model, time-aware
occlusion reasoning and motion enhancement architectures.

2.1. Further analysis on ABMF model

Here, we show the rationality of our ABMF model pro-
posed in Subsection 3.1 of the main paper, i.e., we need
to verify that h± |πv| ≈ h (equivalently, |πv|

h ≈ 0). To
this end, we define |πv|

h as the vertical pixel displacement
ratio. From [2], one can get |πv|

h = |fv/(h+ fv)|, where
fv denotes the inter-RS-frame vertical optical flow and h is
the number of image rows. We employ the state-of-the-art
optical flow estimation pipeline RAFT [14] to obtain the op-
tical flow map between two adjacent RS frames. Then, we
calculate the average value and standard deviation of |πv|

h
in each image of the test sets of Carla-RS and Fastec-RS
datasets. We plot their respective statistics in Fig. 1. One
can observe that the latent inter-GS-frame vertical optical
flow value is usually much smaller than the number of im-
age rows, i.e. the proposed ABMF model is concise and
reasonable. Note that γ|πv|

h ≤ |πv|
h , which indicates that

our ABMF model is also valid under the general formula-
tion of Subsec. 1.1. Furthermore, as illustrated in Fig. 2,
the ABMF-based RSSR* tends to have misaligned errors
and unsmooth artifacts at local boundaries (e.g. depth vari-
ation, slight blurring, monotonous texture, etc.) due to the
isotropic approximation of ABMF. Fortunately, the experi-
mental results demonstrate that our CVR* (i.e. combining
ABMF with the GS frame refinement module) enhances
local details and improves image quality in a coarse-to-
fine manner, which can serve as an effective and efficient
baseline for RS-based video reconstruction. Note that our
CVR can further improve the fidelity and authenticity of

v
h
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Figure 1. Statistical results of the vertical pixel displacement ratio
|πv|
h

under the Carla-RS and Fastec-RS datasets. Red is the aver-
age value (AVG) and blue is the standard deviation (SD).

the recovered GS images because a better initial estimate is
provided by using the network-based bilateral motion field
(NBMF).

2.2. Further analysis on occlusion reasoning

As can be seen from Fig. 3, the severe occlusion exists in
the pool at the lower-left corner of the RS images (cf . blue
circle). Since RSSR [2] only uses the contents of a single
RS image to synthesize the corresponding GS image, a mass
of occluded black holes inevitably appear (cf . red circles).
In contrast, we mitigate this struggle by effectively aggre-
gating contextual information through occlusion inference.
Interestingly, in the examples of time t = 0.5 shown in
Fig. 3, the estimated bilateral occlusion masks can vividly
reflect the human intuitive observation discussed in [3], i.e.
the first and second rolling shutter images contribute greatly
to the lower and upper parts of the latent GS image at time
t = 0.5, respectively. Meanwhile, the GS image corre-
sponding to time t = 0 or t = 1 will be more convinced by
the RS image that is closer in time, which reasonably fol-
lows the RS imaging mechanism. In a nutshell, our method
can restore high-quality GS images with richer details, en-
hancing the visual experience. Note that our method can
also model temporal abstractions in an end-to-end manner,
which allows adaptively generating time-aware occlusion
masks to obtain GS images at arbitrary times.

2.3. Further analysis on motion enhancement

We further investigate the effectiveness of our motion
enhancement layer in Fig. 4, taking the correction to time
t = 1 as an example. As illustrated by the red boxes, the
motion enhancement scheme facilitates the quality of the
bilateral motion field. As a result, the local image details
(e.g. object-specific motion boundaries, small errors, etc.)
are refined so as to encourage subsequent contextual aggre-
gation. Combined with the proposed contextual consistency
constraint, it can promote high-fidelity GS frame synthesis
with the assistance of bilateral occlusion masks.
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Input RS (Overlayed) RSSR* RSSR [2] CVR* (Ours) CVR (Ours) Ground-truth
Figure 2. Example results of the effectiveness of our ABMF model. Since the ABMF model ignores the depth variations, the ABMF-based
RSSR* may encounter misaligned errors and unsmooth artifacts at motion boundaries, while the (NBMF-based) RSSR [2] can alleviate
these problems to some extent, but still not as well as it could be. Combined with the GS frame refinement module, ABMF provides
concise and tractable benefits for GS video recovery, while NBMF can yield better initialization to generate higher fidelity GS images.
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Figure 3. Example results of the effectiveness of our occlusion reasoning. We show GS frame recovery at times 0, 0.5 and 1, respectively.
The brighter the color in the bilateral occlusion mask, the higher the credibility. Our method can adaptively and efficiently reason about
complex occlusions and temporal abstractions, leading to visually more satisfactory GS reconstruction results than RSSR [2].
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Figure 4. Example results of the effectiveness of our motion enhancement. The second to fifth columns show the initial intermediate GS
frame candidates, the refined intermediate GS frame candidates, and their absolute differences with corresponding ground-truth, respec-
tively. The sixth column indicates the mean of the BMF residual map (the brighter a pixel, the bigger the motion enhancement). Our CVR
effectively enhances ambiguous motion boundaries for more accurate contextual alignment.
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Input RS 1 Intermediate flow (RSSR) Intermediate flow (CVR) Estimated GS (RSSR) Ground-truthEstimated GS (CVR)

Figure 5. Visual results of the intermediate flow estimation. The estimated GS images in the fourth and fifth columns are obtained by
warping the input RS frames according to the intermediate flows in the second and third columns, respectively. Our CVR estimates the
intermediate flow with clearer motion boundaries than RSSR [2] and thus generates more accurate and sharper GS content.

Table 1. Quantitative comparisons on recovering GS images at time step t = 1. The numbers in red and blue represent the best and
second-best performance. In addition to the SOTA quantification performance for GS image recovery at time t = 0.5, our method also
obtains almost consistent best metrics at time t = 1. Note that not only these, high-quality GS video frames corresponding to any time
t ∈ [0, 1] can be accurately estimated by our method.

Method PSNR↑ (dB) SSIM↑ LPIPS↓
CRM CR FR CR FR CR FR

DeepUnrollNet [8] 27.86 27.54 27.02 0.829 0.828 0.0555 0.0791
RSCD [16] - - 24.84 - 0.778 - 0.1070
RSSR [2] 29.36 26.57 24.89 0.900 0.824 0.0553 0.1109
CVR* (Ours) 28.28 28.19 26.58 0.912 0.833 0.0444 0.1014
CVR (Ours) 29.41 29.19 26.67 0.915 0.838 0.0403 0.1011

*: applying our proposed approximated bilateral motion field (ABMF) model.

3. Additional Experimental Results

In this section, we present more qualitative and quanti-
tative experimental results on effect removal, intermediate
flow, and generalization, etc. Furthermore, a video demo
is included to show the dynamic results of reconstructing
slow-motion GS video from two consecutive RS frames.

3.1. RS effect removal

First, we visualize the intermediate flow in Fig. 5 and
compare it with the SOTA RS-based video reconstruction
method RSSR [2]. In contrast to RSSR, our pipeline gener-
ates intermediate flows with clearer motion boundaries for
more accurate frame interpolation due to motion interpreta-
tion and occlusion reasoning. Then, we report more RS ef-
fect removal results in Fig. 6 and Fig. 8 by comparing with
the off-the-shelf video frame interpolation (VFI) and RS
correction algorithms. Finally, in Table 1, we give quantita-
tive comparison results of GS image recovery at time t = 1.
In addition to the superior RS effect removal performance at
time t = 0.5, our pipeline also significantly surpasses RSSR
at time t = 1. In summary, these experimental results con-
sistently demonstrate that the proposed method has superior
RS effect removal capabilities, successfully restoring higher
fidelity global shutter video frames with fewer artifacts and
richer details.

3.2. Generalization on other real data

To evaluate the generalization performance of the pro-
posed method on real rolling shutter images, we utilize the
data provided by [17] and [5], in which the hand-held cam-
eras move quickly in the real world to capture real RS im-
age sequences. As shown in Fig. 9, our CVR and CVR* can
effectively and robustly remove the RS effect to obtain con-
sistent distortion-free images, which validates the excellent
generalization performance of our method in practice.

3.3. GS video reconstruction demo

We attach a supplementary video demo video.mp4 to
dynamically demonstrate the GS video reconstruction re-
sults. In the video, we show the 10× temporal upsampling
results, i.e. evenly interpolating 11 intermediate GS frames
corresponding to time steps 0, 0.1, 0.2, ..., 0.9, 1. In essence,
our method is capable of generating GS videos with arbi-
trary frame rates. Note that except for times 0, 0.5, and 1,
our method has not been fed with GS images of other time
instances during training. More qualitative results on RS
correction datasets [8] and real RS data [5, 17] can be seen
in the supplementary video. With these examples, we can
conclude that our method not only achieves the state-of-the-
art RS effect removal performance that is significantly bet-
ter than competing methods, but also has the superior ability
to recover high-quality and high-framerate GS videos.
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Ground-truthCascaded methodInput RS (Overlay) DAINBMBC CVR (Ours)

Figure 6. Visual examples against off-the-shelf VFI approaches (i.e. BMBC [12], DAIN [1], and Cascaded method). Although the
cascaded method can compensate the drawback of the VFI method that cannot remove RS artifacts, it is also prone to local errors due to
error accumulation, as shown by the red circles.

4. Details of Loss Function
Assuming that T GS images at time instances {ti}T1 , ti ∈

[0, 1] are to be recovered to supervise the training of our
model and that Igtti is the corresponding ground-truth (GT)
GS image, our loss function L is a linear combination of
the reconstruction loss Lr, perceptual loss Lp, contextual
consistency loss Lc, and total variation loss Ltv , i.e.

L = λrLr + Lp + λcLc + λtvLtv, (6)

where λr, λc and λtv are hyper-parameters. The pixel in-
tensities of images are normalized.

The reconstruction loss Lr models the pixel-wise L1

loss betweeen the final GS frame prediction and the cor-
responding ground-truth, given by

Lr =
1

T

T∑
i=1

∥∥∥Îgti − Igtti

∥∥∥
1
. (7)

The perceptual loss Lp contributes to produce fine de-
tails and improves the perceptual quality of the final inter-
mediate GS frame [7] by

Lp =
1

T

T∑
i=1

∥∥∥φ(
Îgti

)
− φ

(
Igtti

)∥∥∥
1
, (8)

where φ is the conv4 3 features of the pre-trained VGG16
network [13], as widely used in [6, 8, 10].

The contextual consistency loss Lc encourages the align-
ment of the refined intermediate GS frame candidates and
their ground-truth frame at time ti. This can also facilitate
the final enhanced BMF to reason about the underlying oc-
clusions and the object-specific motion boundaries, which

Table 2. Ablation results for CVR* architecture on MA and G.

Settings PSNR↑ (dB) SSIM↑
CRM CR FR CR FR

RAFT-based 30.40 29.91 27.67 0.914 0.835
Freeze MA 31.69 31.53 28.51 0.927 0.843
T ·ΔU 31.15 30.95 28.01 0.916 0.831
w/o ΔU 31.61 31.41 27.99 0.925 0.831
w/o O 30.96 30.80 23.89 0.913 0.804
full model 31.82 31.60 28.62 0.927 0.845

are crucial for the final GS frame synthesis. Specifically,
we define Lc as:

Lc =
1

2T

T∑
i=1

(∥∥∥Îg0→ti
− Igtti

∥∥∥
1
+
∥∥∥Îg1→ti

− Igtti

∥∥∥
1

)
. (9)

The total variation loss Ltv enforces piecewise smooth-
ness in the final enhanced BMF [3, 9], i.e.

Ltv =
1

2T

T∑
i=1

(∥∥∥∇Û0→ti

∥∥∥
2
+

∥∥∥∇Û1→ti

∥∥∥
2

)
. (10)

5. Ablations of the Proposed CVR*
Additionally, we report the impact of different network

architecture designs on our CVR* in Table 2 by referring to
the GS images at time t = 0.5. Ablation results that are
almost consistent with CVR in the main paper can be ob-
tained, which fully demonstrates the validity of the network
architecture we used.

6. Failure Cases
We have discussed that our pipeline may have blend-

ing and ghosting artifacts in image regions such as
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Input RS (Overlay) CVR (Ours) Ground-truth

Figure 7. Failure cases in some challenging image areas. The
white pillars and car tails lack texture and are thus prone to aliasing
artifacts.

low/weak/repetitive textures. We reckon this is because our
method exploits image-based warping, and thus potential
gross errors of the estimated BMF in these challenging re-
gions can easily lead to contextual misalignment. In fact,
this is a common challenge for the current RS correction
method based on image warping, e.g. [2, 17–19]. We show
visual results of the failure cases in Fig. 7. Similar to the
training process of VFI methods [6, 11, 15], it will likely be
helpful to use more GT GS images at different time steps to
supervise the training of our network. In the future, we also
plan to improve the BMF estimation or design feature-based
aggregation schemes to ameliorate this weakness.
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RS frame 1 SUNet DiffHomo DiffSfM

RSSR CVR* (Ours) CVR (Ours) Ground-truth

RS frame 1 SUNet DiffHomo DiffSfM

RSSR CVR* (Ours) CVR (Ours) Ground-truth

Figure 8. Rolling shutter effect removal examples against competing approaches (i.e. SUNet [3], DiffHomo [18], DiffSfM [17], and
RSSR [2]). Even columns: Absolute difference between the corrected global shutter image and the corresponding ground-truth.
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Original RS image CVR* (Ours) CVR (Ours)

Figure 9. Generalization results on real rolling shutter data with noticeable rolling shutter artifacts. The data in the first three rows are
from [17], and the last three rows are from [5]. Consistent and high-quality correction results are obtained by our CVR and CVR*.
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