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A. Submission on Test Server

Due to the submission frequency limit of the Waymo
test server, we only report the results of our best model.
We compare SST with the three most competitive meth-
ods and report their performances in the multi-frame set-
ting from the official leaderboard. The results are shown
in Table A and Table B. The performance of SST on vehi-
cle class is comparable with these methods, and the perfor-
mance of SST on pedestrian class significantly outperforms
other methods.

Methods
LEVEL 1 LEVEL 2

3D AP/APH 3D AP/APH

PVRCNN 2f [10] 81.06/80.57 73.69/73.23
CenterPoint 2f [18] 81.05/80.59 73.42/72.99
RSN 3f [13] 80.70/80.30 71.90/71.60
SST TS 3f (Ours) 80.99/80.62 73.08/72.74

Table A. Performance of vehicle detection on test split of Waymo
Open Dataset.

Methods
LEVEL 1 LEVEL 2

3D AP/APH 3D AP/APH

PVRCNN 2f [10] 80.31/76.28 73.98/70.16
CenterPoint 2f [18] 80.47/77.28 74.56/71.52
RSN 3f [13] 78.90/75.60 70.70/67.80
SST TS 3f (Ours) 83.05/79.38 76.65/73.14

Table B. Performance of pedestrian detection on test split of
Waymo Open Dataset.

B. Discussion of Sparse Operations

Due to the space limit of the main paper, we leave the
discussion on sparse operations in the supplementary mate-
rials. In this section, we discuss two problems for sparse
operations: (1) insufficient receptive field of submanifold
sparse convolution (SSC) [4], and (2) the difficulties of
downsampling/upsampling in sparse data.

B.1. Insufficient Receptive Field of Submanifold
Sparse Convolution (SSC)

In Sec. 1 and Table 7 in our main paper, we briefly point
out that the SSC-based single-stride architecture faces a se-
vere problem of the insufficient receptive field. We demon-
strate this issue here in Fig. A by comparing the behaviors
of SSC and standard 2D convolution in sparse data. Both
the SSC and standard convolutions have two layers with a
kernel size of three. However, the SSC could not reach the
voxel on the top-left corner from the voxel marked with a
star, while the standard convolution is capable of doing this.
This example intuitively illustrates the insufficiency of re-
ceptive fields for SSC, and we explain the reasons in detail
as follows.

The SSC do not “fill” empty voxels for the sake of ef-
ficiency, which largely constrains the information commu-
nication between voxels. Under such conditions, in Fig. A
(a), only one voxel (the pink one) in has information com-
munication with the one marked by a red star if the kernel
size is 3 × 3. On the contrary, Fig. A (b) shows that the 2D
convolution can gradually enlarge the receptive field by in-
volving the empty voxels in the convolution process, which
is more effective for aggregating information compared to
the SSC.

To give an experimental illustration, we conduct experi-
ments on the class of vehicles, which require sufficient re-
ceptive field for detection. In the Table 7 of the main paper,
replacing the 3 × 3 standard convolutions with SSC will
cause a significant drop of AP from 64.69 to 51.57. We fur-
ther increase the receptive field by expanding the kernel size
of SSC to 5 × 5 and 7 × 7. These improve the performance
from the 3D AP 51.57 to 55.40 and 56.77, but there is still a
large gap to the variant using standard convolutions. There-
fore, these numbers support our analyses on the insufficient
receptive fields of SSC.

B.2. Downsampling/Upsampling in Sparse Data

Although downsampling and upsampling are common in
dense data, e.g., pooling in CNN, token merge in Swin-
Transformer, it is non-trivial to transfer these techniques
to sparse data like point clouds. A variant of SSC named
Sparse Convolution (SC) follows the standard convolu-
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tion to implement the downsampling and upsampling in
sparse data. With such implementation, data loses sparsity
rapidly [17, 18] and this leads to high computational over-
head.

In our sparse Transformer, downsampling/upsampling
by token merge [7] also needs careful consideration. First,
the downsampling operation is still an open problem for
point clouds: what is the best way to merge the varied
number of tokens scattered in different spatial locations?
Second, the upsampling operation is also non-trivial and
requires future research: how to recover a couple of to-
kens in different locations from a single token effectively
and efficiently? In developing the SST, we encounter these
challenges and find it difficult to offer satisfying solutions.
Although we have bypassed these difficulties by adopting
the single-stride architecture, we hope future research may
work on this downsampling/upsampling question and better
utilizes sparse data.

C. Potential Improvements
In order to rule out unimportant factors and present a

clean architecture, we only inherit the basic framework of
PointPillars [5]. So there is a large room for further perfor-
mance improvements, and we list some of them as follows.
We will adopt these techniques in our future work.

IoU Prediction. In detection, the classification score of
a bounding box are not always consistent with the real re-
gression quality. So many recent methods [3,10,11,18] use
another branch to predict the IoU between output bounding
boxes and the corresponding ground-truth boxes, and use
the predicted IoU to correct the classification scores.

More Powerful Second Stage. We use LiDAR-RCNN [6]
as our second stage, which is a lightweight PointNet-like
module only takes the raw point cloud as input. So it has
no effect on our first stage and is convenient for our analy-
sis of single-stride architecture. However, its performance
is inferior to some other elaborately designed RCNNs, e.g.,
CenterPoint [18], PartA2 [11], PVRCNN [10], PyramidR-
CNN [8], which reuse the features from the single stage
to achieve better refinement. With the point-level features
interpolated from feature maps in the first stage, SST can
be equipped with most of these methods and aim for better
abilities.

Incorporating Advanced Techniques in Vision Trans-
former. We have witnessed the fast progress of vision
transformers. Many advanced techniques can be borrowed
to enhance the performance of SST. (1) Better efficiency:
There are a lot of techniques can be adopted to improve
our efficiency, for example, token selection [9,15], attention
simplication [14]. (2) Better efficacy: Some techniques can
be used to make SST more effective, e.g., relative positional
encoding [16], different attention mechanism [2].

D. Computational Complexity Compared with
Convolutions

We investigate the computational complexity of the SST
architecture and convolutional architectures. Our analyses
demonstrate that SST has a unique advantage in efficiency
by utilizing the sparsity of point clouds and the regional
grouping.

Following the calculation in Swin-Transformer [7], we
inspect the computational complexities of convolutional ar-
chitectures and SST. For an input scene size of h × w, a
convolution layer with kernel size k × k and channel num-
ber C has the complexity as Equation 1. On the same scene,
an SRA operation has the complexity as Equation 2, where
it has H-heads, region size of R×R, and the average spar-
sity as S, which is the ratio for non-empty voxels1.

Ω(Conv) = hwk2C2, (1)

Ω(SRA) = 4ShwC2 + 2HS2R2hwC, (2)

As shown in the equations, the computational complexities
for convolutions and SRA operations are all O(hw), thus
are both linear to the scale of input. However, the SRA op-
erations have the linear factor of S, which is generally small
due to the sparsity of point clouds. According to our statis-
tics, S roughly equals to 0.09 on Waymo Open Dataset with
our voxelization. Such an analysis indicates that our SRA
operations is efficient by properly exploiting the sparsity of
LiDAR data.

E. Use of existing assets

Codebase We use MMDetection3D [1] for all of our ex-
periments. MMDetection3D offers solid implementation of
a wide variety of 3D detection algorithms. MMDetection3D
is licensed under Apache License, Version 2.0.

Dataset We use Waymo Open Dataset [12] as the bench-
mark for our experiments. The Waymo Open Dataset is
licensed under separate terms. (See https://waymo.
com/open/terms/ for details.)
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Figure A. Illustration of receptive enlarging in the 3 × 3 submanifold sparse convolution (SSC) and the standard 3 × 3 convolution. In
SSC, only the information of the voxel (the pink one) covered by the kernel can reach to the red star. In 2D convolution, all non-empty
voxels can reach to the red star after 2 convolution layers, because the empty locations are “filled” by the convolution.
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