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028 Figure 1. 2D representation of the latent space for multiple methods trained only on the CIFAR-10 dataset obtained using Principal 082
029 Component Analysis (PCA) [7]. The PCA provides a deterministic change of base for the data from a multidimensional space into a 2D 083
030 space. The legend (f) displays the classes, which are divided between super-classes Vehicles and Animals following the WordNet hierarchy 084
031 [6]. The different methods (a,b,c,d,e) are all able to cluster the samples. However, while (a,b,e) display a latent space where classes 085
032 are close to each other, the two MLP-based methods (c,d) are able to provide a clearer separation between classes. Both methods show 086
033 conceptual-semantically close samples on the edge of each superclass, such as airplanes and birds. Inside each superclass, semantically 087
034 close samples are represented contiguously, such as deers and horses, or cars and trucks. Our method (c) provides better inter-class and 088
035 intra-class separability. We provide numerical results of the classes overlap in Fig. 2. 089
036 090
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038 A. Content 092
039 In the supplementary material we attached: 093
040 094
041 « Further qualitative results about the latent space organization as the representation of conceptual-semantic relationship 095
042 in data shown in Fig. 1. 096
043 097
044 * Additional results in Fig. 2 comparing the correlation between two classes in the latent space. 098
g:g . A. .Zip ﬁle with thg code. to run ar}d repfoduce our e.xperimental setup and results. The code is written using PyTorch ?32
047 Lightning and it will be included in a GitHub repository upon acceptance. 101
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146 200
147 Figure 2. The overlap percentage O between classes in the latent space is reported for each possible class and each method. For each table, 201
148 the top-left quadrant represents the overlap percentage between classes belonging to the super-class animals, while the bottom-right one for 202
149 !:he sup.erclass vehicles. ”Ijhe top-right and bottom-lleft quadrants represent the area wher.e a mistake with a higher hierarchical severity .[1] 203
150 is possible. It would be ideal to have the‘ table with zeros fo.r all the values, but the diagonal. Tl}at. Would.represent’ perfect sepa.ratlon 204
between all the classes. Our method provides the best separation between the two superclasses. It is interesting to notice that the highest
:g; intra-superclasses correlation is present between the two classes bird and airplanes which share features like the wings and the ability to zgz
w 207
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