Bridging Video-text Retrieval with Multiple Choice Questions
Appendix

A. Visualization

In our method, the pretext task MCQ is performed us-
ing a parametric module BridgeFormer, to answer multi-
ple choice questions. We construct questions through eras-
ing the content phrases (i.e. noun and verb phrases) of the
text, and BridgeFormer is trained to select the correct an-
swer from multiple choices by resorting to the local to-
kens of VideoFormer. Specifically, given question text to-
kens from TextFormer as the query, and video tokens from
VideoFormer as the key and value, BridgeFormer performs
cross-modality attention between them.

A.l. Answering Noun Questions

We first visualize the cross-modality attention between
noun question tokens and video tokens in Fig. 1. In the sec-
ond column, the noun phrase marked in blue (Q1) is erased
as the question, and in the third column, the noun phrase
marked in green (Q2) is erased as the question. In Fig. 1
(a), when “an old couple” is erased as the question (Q1),
BridgeFormer focuses on video tokens that depict the ap-
pearance characteristics of the persons, and when “a plate
of bread” is erased (Q2), it focuses on object video tokens
on the table. In Fig. 1 (d), when “football” is erased (Q1),
BridgeFormer focuses on the object video tokens that can be
associated with “play”, and when the location phrase “coun-
tryside lawn” is erased (Q2), it pays more attention to the
video tokens in the background to infer the answer. Bridge-
Former attends to video patches with specific object infor-
mation to answer questions, which also shows that Video-
Former extracts accurate spatial content from videos.

A.2. Answering Verb Questions

We further visualize the cross-modality attention be-
tween verb question tokens and video tokens in Fig. 2.
Three frames are sampled from a video and the verb phrase
marked in blue is erased as the question. In Fig. 2 (a), when
the verb “cutting” is erased, BridgeFormer focuses on the
motion of the spoon on the pizza, and in Fig. 2 (b), when
the verb “drinking” is erased, it follows the movement of
the hand holding a cup of water. BridgeFormer focuses on
object motions of video tokens to answer verb questions,

(@) “An old couple/[?] (Q1) are drinking coffee, and there is
a plate of bread/[?] (Q2) on the table in front of them.”
i g
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(b) A girl is walking with a og/[.] (Q1) near a Iae/[?]
(©2), and there is a meadow on her left.”

(c) “A woman wearing a pinkv diress/[?\]“('Qi) and ca.rr&/ing
a black handbag/[?] (Q2) is walking in the park.”

(d) “Parents and kids are playing football/[?] (Q1)
on the countryside lawn/[?] (Q2).”

Figure 1. The visualization of the cross-modality attention be-
tween the text tokens of noun questions (as query) and video to-
kens (as key and value) from BridgeFormer. In the second column,
the noun phrase marked in blue (Q1) is erased as the question,
and in the third column, the noun phrase marked in green (Q2)
is erased as the question. BridgeFormer attends to video patches
with specific object information to answer noun questions.

which also shows that VideoFormer captures temporal dy-
namics of videos.



Frame 2

Frame 1

(a) “Ahand is cutting/[?] (Q) the pizza on the wooden table.”

(b) “A man standing on the lake shore is drinking/[?] (Q) hot tea.”

Figure 2. The visualization of the cross-modality attention be-
tween the text tokens of verb questions (as query) and video to-
kens (as key and value) from BridgeFormer. Three frames sampled
from a video are shown and the verb phrase marked in blue (Q) is
erased as the question. BridgeFormer focuses on object motions
of video tokens to answer verb questions.

B. CLIP-based Pre-training

Because of the prominent success of the CLIP [9] (Con-
trastive Language-Image Pre-training) in learning image-
text representations, which is pre-trained on 400 million
image-text pairs, some recent work [0, 8] utilize the pre-
trained CLIP for text-to-video retrieval. We also initial-
ize our model from CLIP weights to pre-train a model fol-
lowing the setting of CLIP4Clip [6]. Specifically, we use
the pre-trained CLIP (ViT-B/32) as the backbone of Vide-
oFormer and TextFormer, and randomly initialize Bridge-
Former. The comparisons between our method and other
CLIP-initialized methods are shown in Table. 1. We can
observe that our CLIP-based pre-trained model achieves
higher performance for text-to-video retrieval on three
datasets with under both the zero-shot and fine-tune evalua-
tion. Our pretext task MCQ also benefits CLIP-based video-
text pre-training for downstream text-to-video retrieval.
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Figure 3. The architecture of TextFormer, VideoFormer and
BridgeFormer, which contain a stack of TextBlocks, VideoBlocks
and BridgeBlocks respectively. Tokens from all-level VideoBlock
and TextBlock are fed into the corresponding BridgeBlock to per-
form cross-modal attention and then are added to the output tokens
of the previous BridgeBlock (if any). Each block performs a se-
ries of operations such as multi-head attention [5], normalization
(norm) and multi-layer perception [4] (MLP).

C. Detailed Model Architecture

Our method consists of three components, including a
VideoFormer, a TextFormer and a BridgeFormer. Each
component is made up of a stack of blocks as shown in
Fig. 3. TextBlock and VideoBlock adopt the structure of
BERT [4] and ViT [5] respectively, each performing a se-
ries of operations such as multi-head attention [5], nor-
malization (norm) and multi-layer perception [4] (MLP).
BridgeBlock takes question text tokens as the query and
video tokens as the key and value to perform the cross-
modality attention for the interacted tokens. The inter-
acted tokens added with the output tokens from the previ-
ous BridgeBlock further go through a series of operations
similar to those in the VideoBlock for temporal and spatial
self-attention.



Table 1. Text-to-video retrieval results of models initialized from CLIP [9] weights on different datasets under zero-shot and fine-tune
evaluation, where higher R@k and lower MdR (Median Rank) and MnR (Mean Rank) indicate better performance.

MSR-VTT MSVD LSMDC
Method R@1 R@5 R@I10 MdR MnR | R@l R@5 R@I0 MdR MnR | R@]1 R@5 R@10 MdR MnR
CLIP-straight [8] | 31.2  53.7 64.2 4.0 - 37.0  64.1 73.8 3.0 - 1.3 227 29.2 56.5 -
CLIP4Clip [6] 320 570 66.9 4.0 340 | 385 669 76.8 2.0 17.8 | 151 285 36.4 28.0 117.0
Ours 332 580 68.6 4.0 257 | 484 764 85.8 2.0 7.4 155 307 38.7 220 979
CLIP4Clip [6] 431 704 80.8 2.0 162 | 462  76.1 84.6 2.0 10.0 | 20.7 389 472 13.0 653
Ours 49 719 80.3 2.0 153 | 544 828 89.4 1.0 6.1 21.8 411 50.6 10.0  60.5

Table 2. Comparisons between the video encoder in our method
and Frozen [1]. The evaluation is performed on zero-shot text-to-
video retrieval on MSR-VTT, where higher R @k and lower MdR
(Median Rank) indicate better performance. “# Params” denotes
the number of parameters of the video encoder (M: million).

Method | R@1
Frozen [1] | 18.7
Ours 22.3

R@5 R@I10 MdR | #Params
395 516 100 | 114M
438 520 9.0 86M

D. VideoFormer

VideoFormer takes a video V €
as input containing variable M frames of res-
olution H x W. The input video is first divided into M x N
patches of size P x P, where N = HW/ P2. The video
patches v € RMX3XNXPXP are fed into a linear projec-
tion head with a convolutional layer and are flattened into
a sequence of tokens z, € RM*NXD where D is the
number of embedding dimensions. Following BERT [4],
a learnable [CLS] token is concatenated to the beginning
of the token sequence, which is used to produce the final
video representations. Learnable spatial positional embed-
dings Epos € RWH1xD are added to each video token as
the final input token sequence 20 € RUTMXN)XD and all
patches in the same spatial location in different frames are
given the same spatial positional embedding.

Video Input.
RM X3X HxW

Modification to ViT. VideoFormer is built upon a vision
transformer ViT [5], and consists of a stack of VideoBlocks.
We make a minor modification to the original ViT to al-
low for the input of video frames with variable length.
Specifically, given z/~! € ROFTMXN)XD from previous
VideoBlock, we perform multi-head attention (MSA) [5]
for the [CLS] token through attending to all (1 + M x N)
patches across time and space for temporal and spatial self-
attention. For the rest (M x N) patch tokens, MSA is per-
formed within each of M frames with N + 1 tokens (N
patch tokens and 1 [CLS] token) for spatial self-attention.
The video representations are obtained from the [CLS] to-
ken of the final VideoBlock.

Comparison with Frozen. Frozen [1] also adopts ViT [5]
as the video encoder, and adds temporal attention blocks
based on the spatial attention blocks of ViT to encode

Table 3. The effects of the prompt “[MASK]” for noun and verb
representations, where “End”, “Middle” and “Start” denote the
location of the prompt. For zero-shot text-to-video retrieval on
MSR-VTT, higher R@k is better. For zero-shot action recogni-
tion on HMDBS51 and UCF101, higher top-1 accuracy is better.

MSR-VTT HMDBS51  UCF101
Method R@l R@5 R@I10 Top-1 Top-1
w/o Prompt | 23.1 435 54.3 34.8 45.8
End 242 457 544 334 48.5
Middle 243 432 539 33.1 46.4
Start 251 454 554 34.9 514

videos with variable-length sequences. As shown in Ta-
ble. 2, compared with Frozen, our VideoFormer decreases
28 million parameters. Furthermore, the model without the
pretext task MCQ indeed takes the same pre-training ap-
proach as Frozen except for the video encoder, and achieves
better results for zero-shot text-to-video retrieval on MSR-
VTT [12], which proves the efficiency and effectiveness of
our VideoFormer.

E. Prompt for Phrase Representation

In our method, BridgeFormer is trained to select the
correct answer by contrasting noun answer representations
with noun representations, and contrasting verb answer rep-
resentations with verb representations. Accurate represen-
tations for noun and verb phrases are essential. Since
TextFormer is trained with full sentences, it fails to encode
accurate representations for phrases when it takes a single
noun or verb phrase as the input due to the lack of con-
text. Motivated by the success of prompt engineering [9],
we add “[MASK]” before the noun and verb phrase (e.g.
“[IMASK] [MASK] [MASK] green grass”) to extract noun
or verb representations from TextFormer. We show ablation
studies of the prompt “[MASK]” for noun and verb repre-
sentations in Table. 3, where each model is pre-trained using
1 frame. The model without the prompt “[MASK]” takes
a single noun or verb phrase as inputs, and achieves the
worse results on both the zero-shot text-to-video retrieval
and action recognition, showing that TextFormer cannot un-
derstand the semantics accurately with a single noun or verb
phrase as inputs. The model with the prompt “[MASK]” at
the beginning of the phrase achieves the best results in gen-
eral, and we adopt this practice in our method.



F. More Discussions about Related Work
F.1. Video Question Answering (VQA)

Works on video question answering (VQA) [2,7, 10, 14]
aims to answer questions about videos through training a
model with question and answer pairs, which cannot be di-
rectly applied for pre-training as they are deliberately op-
timized for increasing VQA accuracy. By contrast, our
work aims to learn downstream-agnostic generic features
for video-text retrieval, where a new pretext task, multiple
choice questions, is proposed to enhance the semantic as-
sociations between video and text. Our paper is the first to
use the form of VQA as a pre-training pretext task, with fwo
key innovations: the MCQ loss and the BridgeFormer mod-
ule. BridgeFormer smoothly bridges the final objective of
learning well-aligned video and text features with the regu-
larization of a VQA pretext task.

F.2. Video-text Retrieval with Nouns and Verbs

Works [3, 11, 13, 15] solved video-text retrieval by fo-
cusing on verbs and nouns of texts, which are specially de-
signed for retrieval with verbs and nouns as the refined text
representations to directly align with videos. By contrast,
we exploit the rich semantics of nouns and verbs in the text
to build questions for improving text and video encoders.

References

[1] Max Bain, Arsha Nagrani, Giil Varol, and Andrew Zisser-
man. Frozen in time: A joint video and image encoder for
end-to-end retrieval. In ICCV, pages 1728-1738, 2021. 3

[2] Aman Chadha, Gurneet Arora, and Navpreet Kaloty. iper-
ceive: Applying common-sense reasoning to multi-modal
dense video captioning and video question answering. arXiv
preprint arXiv:2011.07735, 2020. 4

[3] Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. Fine-grained
video-text retrieval with hierarchical graph reasoning. In
CVPR, pages 10638-10647, 2020. 4

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, 2019. 2,
3

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In /CLR, 2020. 2,
3

[6] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei,
Nan Duan, and Tianrui Li. Clip4clip: An empirical study
of clip for end to end video clip retrieval. arXiv preprint
arXiv:2104.08860, 2021. 2, 3

[7] Tegan Maharaj, Nicolas Ballas, Anna Rohrbach, Aaron
Courville, and Christopher Pal. A dataset and exploration
of models for understanding video data through fill-in-the-

blank question-answering.
2017. 4
[8] Jestis Andrés Portillo-Quintero, José Carlos Ortiz-Bayliss,
and Hugo Terashima-Marin. A straightforward framework
for video retrieval using clip. In Mexican Conference on Pat-
tern Recognition, pages 3—12. Springer, 2021. 2, 3
[9] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. arXiv preprint arXiv:2103.00020, 2021. 2, 3

[10] Arka Sadhu, Kan Chen, and Ram Nevatia. Video question
answering with phrases via semantic roles. arXiv preprint
arXiv:2104.03762,2021. 4

[11] Michael Wray, Diane Larlus, Gabriela Csurka, and Dima
Damen. Fine-grained action retrieval through multiple parts-
of-speech embeddings. In ICCV, pages 450459, 2019. 4

[12] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large
video description dataset for bridging video and language. In
CVPR, pages 5288-5296, 2016. 3

[13] Ran Xu, Caiming Xiong, Wei Chen, and Jason Corso. Jointly
modeling deep video and compositional text to bridge vision
and language in a unified framework. In AAAI, volume 29,
2015. 4

[14] Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and
Cordelia Schmid. Just ask: Learning to answer questions
from millions of narrated videos. In ICCV, pages 1686—
1697, 2021. 4

[15] Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk
Cinbis, David Fouhey, Ivan Laptev, and Josef Sivic. Cross-
task weakly supervised learning from instructional videos.
In CVPR, pages 3537-3545, 2019. 4

In CVPR, pages 6884-6893,



