
A. Implementation details for Pretraining

We train using AdamW with a batch size of 4096 for

each dataset, and use a cosine learning rate (LR) schedule

with linear warm up and cool down phases for the first and

last 10% of training, respectively. We train for 500 epochs

with a peak LR of 2 · 10−3 and a weight decay of 5 · 10−2.

Swin-T, Swin-S and Swin-L use a window size of 8×7×7,

whereas Swin-B uses a window size of 16×7×7. The models

are trained with stochastic depth with a drop rate of 0.1 for

Swin-T, 0.2 for Swin-S, and 0.3 for Swin-B, and Swin-L.

We use exponential moving average (EMA) [73] with a de-

cay of 10−4 and report the best results during training since

EMA results peak before the end of training.

For IN1K and IN21K we use RandAugment [19],

mixup [101], CutMix [98], label smoothing [85], and Ran-

dom Erasing [104] with the same settings as used in [88],

and color jittering of 0.4. For SUN RGB-D we clamp

and normalize the disparity channel, drop the RGB chan-

nels with a probability of 0.5, and we also apply 0.5

Dropout [82] before the linear head when pre-training with

ImageNet-21K. For Kinetics-400 we use mixup, CutMix

and label smoothing, and Dropout of 0.5 before the linear

head.

B. Details on the Transfer Tasks

B.1. Image Classification

We finetune all models on the downstream tasks for 100

epochs and optimize the models with mini-batch SGD. We

use a half-wave cosine learning rate [54] and set the weight

decay to zero. For all models, including the modality-

specific models, we perform a grid search for the best learn-

ing rate in the range [5e-3, 1e-2, 2e-2, 4e-2, 8e-2, 1e-1, 2e-

1, 3e-1, 4e-1, 5e-1, 6e-1] and drop path in [0.1, 0.3]. We

use the strong augmentations from [88] for finetuning. For

the evaluations in Tables 3 and 5, we follow [78] and resize

the images to shortest side of 224px and evaluate the mod-

els on the center crop of 224 × 224. For higher resolution

(384px) evaluations in Table 5, we similarly resize the im-

ages to shortest side of 384px and evaluate the models on

the center crop of 384 × 384. We also increase the spatial

window size for all the Swin models from 7 to 12.

B.2. Video Classification

In Table 3, we finetune video models using hyperparam-

eters as described in [52]. For Something Something-v2, we

finetune for 60 epochs with AdamW optimizer. We use half-

wave cosine learning rate with warmup. We start the learn-

ing rate from 10−6 and linearly warmup to a peak learning

rate of 6 ·10−3 over 5% of the training, and rest 95% we use

half-wave cosine schedule to decay the learning rate back

to 10−6. We train the classification head with this learning

rate, and the backbone with 0.1× the above learning rate.
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Figure 6. Gain of OMNIVORE over baseline on Action recog-

nition (per group). We plot the gain in per-class F1-score on the

K400 dataset for all the action groups defined in [13]. The base-

line model is first pretrained on ImageNet-1K and then fine-tuned

on K400 whereas OMNIVORE is trained jointly on ImageNet-1K,

K400 and the single-view 3D SUN RGB-D dataset. OMNIVORE

improves the performance for all the 38 groups.

Throughout we use a weight decay of 0.05. We use a batch

size of 4× 64 distributed over 64 32GB GPUs. For EPIC-

Kitchens-100, we use similar hyperparamters with only dif-

ference being that we use a peak learning rate of 2 ·10−3

and we train for 150 epochs. These settings provided better

performance for the modality-specific baseline, and we use

it for finetuning both the baseline and OMNIVORE models.

In terms of preprocessing, at train time we sample a 32

frame video clip at stride 2 from the full video using tem-

poral segment sampling as in [52]. We scale the short side

of the video to 256px, take a 224px random resized crop,

followed by RandAugment and Random Erasing. At test

time, we again sample a 32 frame clip with stride 2, scale

the short side to 224px and take 3 spatial crops along the

longer axis to get 224×224 crops. The final predictions are

averaged over these crops.

For comparison to the state-of-the-art in Table 6, when

finetuning OMNIVORE models trained with IN21K, we

found slightly different hyperparameters to perform better.

For Something Something-v2, we used peak learning rate

of 1.2 · 10−3 over 150 epochs. For EPIC-Kitchens-100, we

used weight decay of 0.004, over 100 epochs, peak learning

rate of 4 · 10−4, with the same learning rate schedule for

backbone and head. We also used cutmix augmentation and

label smoothing. All other hyperparameters in both cases

were as described earlier. We also use EMA with similar

settings as used during pretraining.

B.3. Single-view 3D Tasks

NYU Scene classification. We follow the setup from [33]

for scene classification and use 10 classes derived from the

original 19 classes. In Table 7 (classification) the best Swin
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Figure 7. Gain of OMNIVORE over baseline on Action Recognition (per class). We plot the gain in per-class F1-score on the K400

dataset for the top twenty and bottom twenty classes. The baseline model is first pretrained on ImageNet-1K and then fine-tuned on K400

whereas OMNIVORE is trained jointly on ImageNet-1K, K400 and the single-view 3D SUN RGB-D dataset. OMNIVORE improves the F1

score on 308 out of the 400 total classes.

B and Swin L models were trained for 200 epochs with

starting learning rate of 5 × 10−3, weight decay of 0 for

Swin B and 1 × 10−4 for Swin L. All other hyperparame-

ters were as described earlier.

NYU RGBD Segmentation. We follow the training and

evaluation setup from [10]. We follow the Swin segmen-

tation architecture which uses an UperNet [95] head with

the Swin trunk. All models are finetuned with AdamW [53]

with a weight decay of 0.01. The learning rate follows a

Polynomial Decay (power 1) schedule and starts at 0.00006.

We warmup the learning rate for 1500 iterations and train

the model with a batchsize of 32. All the depth maps in

NYU are converted into disparity maps by using the camera

baseline and focal length of the Kinect sensor.

B.4. k-NN experiments

Extracting depth on ImageNet-1K. We ran a monocular

depth-prediction model [74] on the IN1K train set. We used

the pretrained dpt large model and followed the input im-

age preprocessing steps as provided in [74].

Classifying ImageNet-1K using different modalities.

For the experiments involving classification using different

modalities, we extract features from the IN1K train set us-

ing the RGB, RGBD or just Depth (D) modalities, and on

IN1K validation set using the RGB modality. We follow

the k-NN protocol from [12] for evaluation and briefly de-

scribe it next. We extract the stage 3 [51] features and L2

normalize them. For each validation feature as the query,

we retrieve the nearest neighbors from the train set using

euclidean distance, and take the top-k closest matches. For

VideoSwin-B OMNIVORE (Swin-B)

3-split accuracy 96.9 98.2

Table 9. UCF-101. As in Table 3, the VideoSwin model is in-

flated from IN1K and pre-trained on K400. OMNIVORE is pre-

trained with IN1K, K400 and SUN RGB-D. Both models are then

finetuned and evaluated on UCF-101 for each split separately. Per-

formance reported is averaged over the standard 3 splits.

each match we create a one-hot vector using its ground truth

label, and scale it by es/τ , where s is the dot product be-

tween the feature of the matched image the query image,

and τ is a temperature hyperparameter (set to 0.07). We

compute an effective prediction for the query by summing

the top-k one-hot vectors. Similar processing is used for the

visualizations in Figure 1 and Figure 4.

C. Other Results

Results on UCF-101. We also evaluate OMNIVORE on an-

other popular (albeit smaller) video recognition benchmark,

UCF-101 [81]. As shown in Table 9, OMNIVORE pre-

training is effective for sports action recognition in UCF-

101 as well. Note that the results shown are with RGB

modality only; the state-of-the-art on these datasets often

leverages additional features such as optical flow, dense tra-

jectories (IDT) etc.

Low-data regime fine-tuning. We analyzed low-shot

versions of the Places-365 benchmark (models from Ta-

ble 3). As shown in Table 10, OMNIVORE outperforms the

modality-specific baseline in the low-shot regime too.



Method Places-365

1% 2% 5% 10%

OMNIVORE 46.2 49.0 51.5 53.9

Image-specific 44.8 47.9 50.9 53.4

Table 10. Low-shot finetuning. Performance of finetuning OM-

NIVORE on low-shot versions of the Places-365 dataset.

Per-class gains. We present the gain of OMNIVORE over

the VideoSwin baseline (§ 4.1 of the main paper) in Figs. 6

and 7.
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