
Appendices
A. Video-to-Text Retrieval Results

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
CE [6] 20.6 50.3 64.0 5.3 25.1
MMT [3] 27.0 57.5 69.7 3.7 21.3
Straight-CLIP [10] 27.2 51.7 62.6 5.0 -
Support Set [9] 28.5 58.6 71.6 3.0 -
TeachText-CE+ [2] 32.1 62.7 75.0 3.0 -
CLIP4Clip-meanP [7] 43.1 70.5 81.2 2.0 12.4
CLIP4Clip-seqTransf [7] 42.7 70.9 80.6 2.0 11.6
X-Pool (ours) 44.4 73.3 84.0 2.0 9.0

Table A1. v2t results on the MSR-VTT-9K dataset.

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
Straight-CLIP [10] 59.9 85.2 90.7 1.0 -
TeachText-CE+ [2] 27.1 55.3 67.1 4.0 -
CLIP4Clip-meanP [7] 56.6 79.7 84.3 1.0 7.6
CLIP4Clip-seqTransf [7] 62.0 87.3 92.6 1.0 4.3
X-Pool (ours) 66.4 90.0 94.2 1.0 3.3

Table A2. v2t results on the MSVD dataset.

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
JSFusion [11] 12.3 28.6 38.9 20.0 -
Straight-CLIP [10] 6.8 16.4 22.1 73.0 -
TeachText-CE+ [2] 17.5 36.0 45.0 14.3 -
CLIP4Clip-meanP [7] 20.6 39.4 47.5 13.0 56.7
CLIP4Clip-seqTransf [7] 20.8 39.0 48.6 12.0 54.2
X-Pool (ours) 22.7 42.6 51.2 10.0 47.4

Table A3. v2t results on the LSMDC dataset.

B. Number of Frames Experiment
Our experiments use 12 sampled frames by default fol-

lowing recent text-video retrieval literature [7], and we run
additional experiments on the MSR-VTT-9K dataset by
varying the number of sampled frames for both training and
inference as shown in Figure B1. We observe worse per-
formance for 6 frames likely due to important information
being missing at this scale. As we increase the number of
frames1, we observe performance saturation which is con-
sistent with findings in [7]. However, we note that the op-
timal number of sampled frames remains a dataset specific
hyperparameter.

C. Online Inference in a Large-Scale Produc-
tion System

Since our model computes an aggregated video embed-
ding conditioned on a given text, the embeddings from a

1”All” indicates inference with all frames at inference time after train-
ing on 12 sampled frames.
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Figure B1. t2v Recall@1 results on the MSR-VTT-9K dataset
when varying the number of frames. “All” indicates inference with
all frames.

video index set in t2v cannot be entirely pre-computed be-
cause query texts are not a priori known during online in-
ference. Instead, we can only pre-compute the frame em-
beddings of each index video, so fast nearest neighbour
retrieval techniques [4, 5] cannot be readily applied. To
address this in a production system with large-scale index
sets, one commonly used approach is to use a high recall
method to obtain a set of top retrieval candidates using using
a nearest-neighbour search, and then use another method
yielding high precision to re-rank the candidates [1, 8].

In our case, we can first mean-pool the pre-computed
frame embeddings coming from X-Pool and then very ef-
ficiently obtain a set of P most similar candidates from
the index set given a retrieval query. We can then run X-
Pool’s text-conditioned attention mechanism only on said
candidates and then re-rank them for retrieval. That way,
given T text queries and V index videos in t2v, instead
of an O(T V) complexity, we can achieve an O(T P + V)
complexity where P << V while maintaining good perfor-
mance. In fact, we evaluated the performance of our model
on the MSR-VTT dataset using the top-100 candidates from
mean-pooling (i.e. P = 100) and obtained the same perfor-
mance in Recall@1, Recall@5 and Recall@10 as listed in
our main results.
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[10] Jesús Andrés Portillo-Quintero, José Carlos Ortiz-Bayliss,
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