

Appendices

A. Video-to-Text Retrieval Results

Methods	R@1 \uparrow	R@5 \uparrow	R@10 \uparrow	MdR \downarrow	MnR \downarrow
CE [6]	20.6	50.3	64.0	5.3	25.1
MMT [3]	27.0	57.5	69.7	3.7	21.3
Straight-CLIP [10]	27.2	51.7	62.6	5.0	-
Support Set [9]	28.5	58.6	71.6	3.0	-
TeachText-CE+ [2]	32.1	62.7	75.0	3.0	-
CLIP4Clip-meanP [7]	43.1	70.5	81.2	2.0	12.4
CLIP4Clip-seqTransf [7]	42.7	70.9	80.6	2.0	11.6
X-Pool (ours)	44.4	73.3	84.0	2.0	9.0

Table A1. $v2t$ results on the MSR-VTT-9K dataset.

Methods	R@1 \uparrow	R@5 \uparrow	R@10 \uparrow	MdR \downarrow	MnR \downarrow
Straight-CLIP [10]	59.9	85.2	90.7	1.0	-
TeachText-CE+ [2]	27.1	55.3	67.1	4.0	-
CLIP4Clip-meanP [7]	56.6	79.7	84.3	1.0	7.6
CLIP4Clip-seqTransf [7]	62.0	87.3	92.6	1.0	4.3
X-Pool (ours)	66.4	90.0	94.2	1.0	3.3

Table A2. $v2t$ results on the MSVD dataset.

Methods	R@1 \uparrow	R@5 \uparrow	R@10 \uparrow	MdR \downarrow	MnR \downarrow
JSFusion [11]	12.3	28.6	38.9	20.0	-
Straight-CLIP [10]	6.8	16.4	22.1	73.0	-
TeachText-CE+ [2]	17.5	36.0	45.0	14.3	-
CLIP4Clip-meanP [7]	20.6	39.4	47.5	13.0	56.7
CLIP4Clip-seqTransf [7]	20.8	39.0	48.6	12.0	54.2
X-Pool (ours)	22.7	42.6	51.2	10.0	47.4

Table A3. $v2t$ results on the LSMDC dataset.

B. Number of Frames Experiment

Our experiments use 12 sampled frames by default following recent text-video retrieval literature [7], and we run additional experiments on the MSR-VTT-9K dataset by varying the number of sampled frames for both training and inference as shown in Figure B1. We observe worse performance for 6 frames likely due to important information being missing at this scale. As we increase the number of frames¹, we observe performance saturation which is consistent with findings in [7]. However, we note that the optimal number of sampled frames remains a dataset specific hyperparameter.

C. Online Inference in a Large-Scale Production System

Since our model computes an aggregated video embedding conditioned on a given text, the embeddings from a

¹“All” indicates inference with all frames at inference time after training on 12 sampled frames.

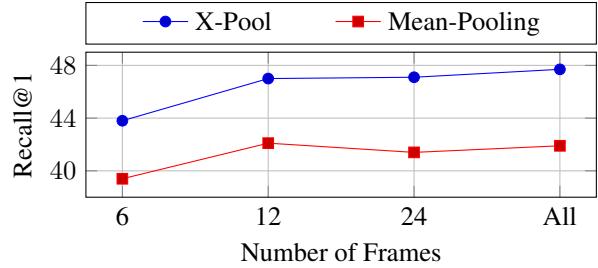


Figure B1. $t2v$ Recall@1 results on the MSR-VTT-9K dataset when varying the number of frames. “All” indicates inference with all frames.

video index set in $t2v$ cannot be entirely pre-computed because query texts are not a priori known during online inference. Instead, we can only pre-compute the frame embeddings of each index video, so fast nearest neighbour retrieval techniques [4, 5] cannot be readily applied. To address this in a production system with large-scale index sets, one commonly used approach is to use a high recall method to obtain a set of top retrieval candidates using a nearest-neighbour search, and then use another method yielding high precision to re-rank the candidates [1, 8].

In our case, we can first mean-pool the pre-computed frame embeddings coming from X-Pool and then very efficiently obtain a set of \mathcal{P} most similar candidates from the index set given a retrieval query. We can then run X-Pool’s text-conditioned attention mechanism only on said candidates and then re-rank them for retrieval. That way, given \mathcal{T} text queries and \mathcal{V} index videos in $t2v$, instead of an $\mathcal{O}(\mathcal{TV})$ complexity, we can achieve an $\mathcal{O}(\mathcal{TP} + \mathcal{V})$ complexity where $\mathcal{P} \ll \mathcal{V}$ while maintaining good performance. In fact, we evaluated the performance of our model on the MSR-VTT dataset using the top-100 candidates from mean-pooling (i.e. $\mathcal{P} = 100$) and obtained the same performance in Recall@1, Recall@5 and Recall@10 as listed in our main results.

References

- [1] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In *Proceedings of the 10th ACM conference on recommender systems*, pages 191–198, 2016. 1
- [2] Ioana Croitoru, Simion-Vlad Bogolin, Marius Leordeanu, Hailin Jin, Andrew Zisserman, Samuel Albanie, and Yang Liu. Teachtext: Crossmodal generalized distillation for text-video retrieval. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 11583–11593, 2021. 1
- [3] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia Schmid. Multi-modal transformer for video retrieval. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16*, pages 214–229. Springer, 2020. 1

- [4] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. *IEEE Transactions on Big Data*, 2019. 1
- [5] Ting Liu, Andrew W Moore, Alexander G Gray, and Ke Yang. An investigation of practical approximate nearest neighbor algorithms. In *NIPS*, volume 12, page 2004. Citeseer, 2004. 1
- [6] Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zisserman. Use what you have: Video retrieval using representations from collaborative experts. *arXiv preprint arXiv:1907.13487*, 2019. 1
- [7] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. Clip4clip: An empirical study of clip for end to end video clip retrieval. *arXiv preprint arXiv:2104.08860*, 2021. 1
- [8] Junwei Ma, Satya Krishna Gorti, Maksims Volkovs, Ilya Stanevich, and Guangwei Yu. Cross-class relevance learning for temporal concept localization. *arXiv preprint arXiv:1911.08548*, 2019. 1
- [9] Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian Metze, Alexander Hauptmann, Joao Henriques, and Andrea Vedaldi. Support-set bottlenecks for video-text representation learning. *arXiv preprint arXiv:2010.02824*, 2020. 1
- [10] Jesús Andrés Portillo-Quintero, José Carlos Ortiz-Bayliss, and Hugo Terashima-Marín. A straightforward framework for video retrieval using clip. In *Mexican Conference on Pattern Recognition*, pages 3–12. Springer, 2021. 1
- [11] Youngjae Yu, Jongseok Kim, and Gunhee Kim. A joint sequence fusion model for video question answering and retrieval. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 471–487, 2018. 1