
Supplementary Material of “Alleviating Semantics Distortion in Unsupervised
Low-Level Image-to-Image Translation via Structure Consistency Constraint”

A. Appendix
A.1. Details of Solving α

To solve the rSMI(V xi , V ŷi), we directly estimate the density ratio using a linear combination of kernel functions of
{vxi
j }Mj=1 ∈ V xi and {vŷij }Mj=1 ∈ V ŷi :

Si
βSi + (1− β)Qi

= ωα(v
xi , vŷi) =

m∑
l=1

αlφl(v
xi , vŷi) = αTφ(vxi , vŷi), (1)

where φ ∈ Rm is the kernel function, α ∈ Rm is the parameter vector we need to solve, and m is the number of kernels. α is
learned so that the following squared error J(α) [9] is minimized:

J(α) = EβSi+(1−β)Qi
[(ωα(v

xi , vŷi)− ω∗(vxi , vŷi))2] = EQ[(1− β)ω2
α] + ES [βω2

α − 2ωα] + J0,

where J0 is a constant number respect to α, and therefore can be safely ignored. Thus, the optimization problem is given as:

min
α

[αTHα− 2αTh],

where
H = (1− β)EQ[φφT ] + βES [φφT ], h = ES [φ].

For computational efficiency, we define the kernel function φ(vxi , vŷi) as the product of K(vxi ; kc) ∈ Rm and L(vxi ; lc) ∈
Rm, which are kernel functions of vxi and vŷi respectively:

φ(vxi , vŷi) = K(vxi) ◦ L(vŷi),

where ◦ denotes the Hadamard product. Approximating the expectations in H and h by empirical averages, and adding a
quadratic regularizer αTRα to avoid over-fitting, the objective function in our optimize problem becomes:

Ĵ(α) = [αT Ĥα− 2ĥTα+ λαTRα], (2)

where R is the positive semi-definite regularization matrix, and

Ĥ =
1− β
n

(K ◦ L)(K ◦ L)T +
β

n2
(KKT ) ◦ (LLT ), ĥ =

1

n2
(K1n) ◦ (L1n),

where n is the number of samples, 1n is the n-dimensional vector filled by ones, and K and L are two m × n matrices
composed by kernel functions. The equation 2 is a unconstrained quadratic problem, and thus could be solved by analytically
and the optimal solution of α̂ is:

α̂ = (Ĥ + λR)−1ĥ.

A.2. Experimental Analysis

A.2.1 β Analysis

We conduct the sensitive analysis of β on the digits datasets (each experiment is repeated 3 times) and the results are shown as
Figure 1 (b). We can see the performance of translation models are all improved with varied β, and we use 0.5 for convenience.
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Figure 1. The training curves and the sensitive analysis about β on Digits datasets

A.2.2 Generation Diversity Analysis

We conduct the generation diversity experiments on the edge2shoes dataset. Following MUNIT [4], we calculate the average
LPIPS distance between 1900 pairs of randomly generated images (sampled from 100 input images). MUNIT with SCC has
the average LPIPS of 0.120, improving the diversity of original MUNIT model with 0.104 LPIPS score. Therefore, our SCC
has no negative impact on generation diversity. Some generation examples are given as Figure 2.

Figure 2. The generation example of MUNIT+SCC on the edge2shoes. Specifically, images at first two rows are source domain images and
the others are translated images by MUNIT+SCC.

Figure 3. The generation example of MUNIT on the edge2shoes. Specifically, images at first two rows are source domain images and the
others are translated images by MUNIT.



A.2.3 Stability Analysis

We conduct the training stability analysis of our SCC on the digits datasets and the results are shown as Figure 1 (a). We can
see the training procedure is stable with our SCC.

A.3. Experiments

A.3.1 KID scores of Qualitative evluation

Following the recent work [5], we use KID score [1] as the evaluation metric to evaluate the . The results are reported as Table
1, and we can see that the vanilla GAN method coupled with our SCC can achieve the comparable results with those methods
with larger model size. In addition, a simple generator based on res-blocks trained by the combination of cycle, geometry and
our SCC constraint can achieve SOTA performance on almost all datasets.

Table 1. KID scores for style transfer tasks. The results of baselines (AGGAN [10] , DRIT [6] , UNIT [7] , MUNIT [4]) are from [5].
Here U (light) is the light version of U-GAT-IT. Specifically, VGG(cosine)/VGG(L2) refer to the Contextual loss [8] and Content loss [3],
respectively, and they optimize contextual and L2 distance of input and translated images’ VGG features, respectively.

Params selfie2anime horse2zebra photo2por anime2selfie zebra2horse por2photo
AGGAN \ 14.63±0.55 7.58±0.71 2.33±0.36 12.72±1.03 8.80±0.66 2.19±0.40
DRIT 65.0M 15.08±0.62 9.79±0.62 5.85±0.54 14.85±0.60 10.98±0.55 4.76±0.72
UNIT \ 14.71±0.59 10.44±0.67 1.20±0.31 26.32±0.92 14.93±0.75 1.42±0.24
MUNIT 46.6M 13.85±0.41 11.41±0.83 4.75±0.52 13.94±0.72 16.47±0.954 3.30±0.47
U-GAT-IT(full) 134.0M 11.61±0.57 7.06±0.8 1.79±0.34 11.52±0.57 7.47±0.71 1.69±0.53
U-GAT-IT(light) 74.0M 12.31±0.50 7.25±0.8 3.43±0.28 15.22±0.51 9.83±0.58 2.67±0.33
U (light)+SCC 74.0M 10.37±0.32 5.19±0.46 3.19±0.26 10.30±0.47 7.80±0.48 1.85±0.26
GAN+VGG(cosine) 588.1M 12.77±0.38 9.39±0.39 3.95±0.26 14.81±0.41 10.36±0.51 3.05±0.25
GAN+VGG(L2) 588.1M 11.42±0.42 6.87±0.58 1.87±0.25 12.28±0.45 9.15±0.49 1.77±0.27
GAN+VGG(L1) 588.1M 11.32±0.45 8.71±0.39 2.59±0.27 13.18±0.39 9.76±0.53 2.31±0.28
GAN + SCC 14.1M 11.37±0.41 7.28±0.52 3.86±0.39 11.61±0.40 7.15±0.46 1.88±0.25
CycleGAN 28.3M 13.08±0.49 8.05±0.72 1.84±0.34 11.84±0.74 8.0±0.66 1.82±0.36
Cycle + SCC 28.3M 11.66±0.41 6.59±0.49 2.91±0.22 10.83±0.44 6.77±0.52 1.62±0.15
GcGAN-rot 16.9M 11.89±0.42 7.05±0.45 2.24±0.26 13.28±0.35 7.67±0.47 1.84±0.28
GcGAN + SCC 16.9M 10.75±0.42 5.12±0.44 1.97±0.24 10.96±0.40 7.10±0.50 1.64±0.22
CUT 18.1M 12.1±0.42 8.45±0.45 2.85±0.33 12.45±0.54 8.99±0.5 2.23±0.31
CUT + SCC 18.1M 11.75±0.41 6.26±0.44 2.31±0.3 12.05±0.44 8.4±0.43 2.11±0.26
Gc+Cycle+SCC 45.2M 10.61±0.44 4.82±0.68 1.64±0.24 10.92±0.35 6.28±0.52 1.31±0.27

A.4. Experimental Details

We will public codes and experimental setting for the convenience of reproducing results in our paper.

A.4.1 Digits

All digits images are resized to 32× 32 resolution. Following [2], the network details of this experiment are given in Table 2.
Following all settings of the original models, the learning rate for generator and discriminator is 0.0002, the training epochs

is 40000 and the batch size is 64.

A.4.2 Cityscapes
All images are resized to 128× 128 resolution. Following [2, 11], the network details of this experiment are given in Table 3.

Following all settings of the original models, the learning rate for all generators and discriminators is 0.0002, the batch size
is 1 and the training epochs for CUT is 400 and other models is 200.



Table 2. The network details of digits translation tasks, where C = Feature channel, K = Kernel size, S = Stride size, Deconv/Conv =
Deconvolutional/Convolutional layer and "channels" donotes the image channels of target domain, such as 1 for MNIST, 3 for MNIST-M.

Generator
index Layers C K S

1 Conv + LeakyReLU 64 4 2
2 Conv + LeakyReLU 128 4 2
3 Conv + LeakyReLU 128 3 1
4 Conv + LeakyReLU 128 3 1
5 Deconv + LeakyReLU 64 4 2
6 Deconv + LeakyReLU channels 4 2
7 Tanh - - -

Discriminator
index Layers C K S

1 Conv + LeakyReLU 64 4 2
2 Conv + LeakyReLU 128 4 2
3 Conv + LeakyReLU 256 4 2
4 Conv + LeakyReLU 512 4 2
5 Conv 512 4 2

Table 3. The network details of digits translation tasks, where C = Feature channel, K = Kernel size, S = Stride size, Deconv/Conv =
Deconvolutional/Convolutional layer and ResBlk = A residual block

Generator
index Layers C K S

1 Conv + ReLU 64 7 1
2 Conv + ReLU 128 3 2
3 Conv + ReLU 256 3 3

4-9 ResBlk + ReLU 256 3 1
10 Deconv + ReLU 128 3 2
11 Deconv + ReLU 64 3 2
12 Conv 3 7 1
13 Tanh - - -

Discriminator
index Layers C K S

1 Conv + LeakyReLU 64 4 2
2 Conv + LeakyReLU 128 4 2
3 Conv + LeakyReLU 256 4 2
4 Conv + LeakyReLU 512 4 1
5 Conv 512 4 1

A.4.3 Maps

All images are resized to 256× 256 resolution. Following [2, 11], the network details is similar to the details of Cityscape, but
the generator contains 9 res-blocks for images with 256× 256 resolution. Following all settings of the original models, the
learning rate for all generators and discriminators is 0.0002, the batch size is 1 and the training epochs for CUT is 400 and
other models is 200.

A.4.4 Style Transfer

All settings are same with Maps A.4.3. The details of datasets as follows:
selfie2anime This dataset is from U-GAT-IT [5], which contains 3400 training images and 100 images for test.
horse2zebra This dataset is from CycleGAN [11], whose training sets contains 1,067 horse images and 1,334 zebra images.
The test set consists of 120 horse images and 140 zebra images.



portrait2photo This dataset is from DRIT [6], whose training sets contains 6,452 photo images and 1,811 portrait images.
The test set consists of 751 photo images and 400 portrait images. Following all settings of the original models, the learning
rate for all generators and discriminators is 0.0002 and the training epochs for CUT is 400 and other models is 200.

A.5. Analysis on the Cat2Dog Dataset

To analyze the performance of our SCC on geometry-variant datasets, we incorporate our SCC constraint into CycleGAN
model and train it on the cat→ dog dataset. The results are shown as Figure 4 , we can see that the trained translation model
can successfully translate dog images at the top row to cat images and preserve the basic image content (i.e. locations of eyes,
mouth, directions of faces), even if there are some changes of geometric structure. However, as images at the bottom row
show, the translation model fails to translate the dog images to cat images in a meaningful way, as the mouth of dogs block
the background but the mouth of cats do not, and so the translation model need to "imagine" some background area that be
blocked, which needs us to propose more constraints.

Input Cyc+SCC Input Cyc+SCC Input Cyc+SCC Input Cyc+SCC

Input Cyc+SCC Input Cyc+SCC Input Cyc+SCC Input Cyc+SCC

Figure 4. Qualitative results on a geometry-variant dataset, including Dog→ Cat. Images at the top row are successful cases, while images
at the bottom row are failure cases.

A.6. Generated Samples

A.7. GTA→ Cityscapes

Input Label GAN+SCC CycleGAN Cyc+SCC

GcGAN GcGAN+SCC CUT CUT+SCC DRIT



Input Label GAN+SCC CycleGAN Cyc+SCC

GcGAN GcGAN+SCC CUT CUT+SCC DRIT

Input Label GAN+SCC CycleGAN Cyc+SCC

GcGAN GcGAN+SCC CUT CUT+SCC DRIT

Input Label GAN+SCC CycleGAN Cyc+SCC

GcGAN GcGAN+SCC CUT CUT+SCC DRIT



Input Label GAN+SCC CycleGAN Cyc+SCC

GcGAN GcGAN+SCC CUT CUT+SCC DRIT

Table 5. Qualitative results on GTA→ Cityscapes. Obviously, the semantic information, such as sky, is better preserved by the translation
model further constrained by our SCC.

A.7.1 Maps

Input Ground Truth Cycle Cycle+SCC GcGAN-Mix GcGAN-Mix +
SCC

Input Ground Truth Cycle Cycle+SCC GcGAN-Mix GcGAN-Mix +
SCC

Table 6. Qualitative results on the Maps dataset.

A.7.2 Cityscapes



Input CycleGAN [11] Cyc+SCC GcGAN [2] GcGAN+SCC CUT CUT+SCC

Input CycleGAN [11] Cyc+SCC GcGAN [2] GcGAN+SCC CUT CUT+SCC

Table 7. Qualitative results on the Cityscape Dataset.

A.7.3 Qualitative Results

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT



MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT



MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Table 8. Qualitative results on Selfie→ Anime. Obviously, the geometry structure, such as face shape, is better preserved by the translation
model further constrained by our SCC.

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT



MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Table 9. Qualitative results on photo→ portrait. Obviously, the semantic information, such as face shape, is better preserved by the
translation model further constrained by our SCC.

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Input GAN+SCC CycleGAN Cyc+SCC GcGAN GcGAN+SCC Gc+Cyc+SCC UGATIT

MUNIT DRIT CUT CUT+SCC UGATIT(light) U(light)+SCC GAN+Contextual

Table 10. Qualitative results on Horse→ Zebra. Obviously, the semantic information, such as horse shape, is better preserved by the
translation model further constrained by our SCC.



A.7.4 Digits

GAN GAN + SCC

CycleGAN CycleGAN + SCC

GcGAN-rot GcGAN-rot + SCC

GcGAN-vf GcGAN-vf + SCC

Gc-rot+Cycle+SCC Gc-vf+Cycle

Table 11. Qualitative comparisons on SVHN→MNIST.



GAN GAN + SCC

CycleGAN CycleGAN + SCC

GcGAN-rot GcGAN-rot + SCC

GcGAN-vf GcGAN-vf + SCC

Gc-rot+Cycle+SCC Gc-vf+Cycle

Table 12. Qualitative comparisons on MNIST→MNIST-M.



A.7.5 Ablation Study

Figure 5. The overlarge λSCC example on SVHN→MNIST.

An example of SVHN to MNIST translation when λSCC is set to 25 is shown as Figure 5. The images are almost translated
without any changes in geometry structures. However, the overlarge λSCC causes the translation model neglect the style
information from adversarial loss, resulting in some images with opposite color. This phenomenon indicates that our SCC has
good performance on the preservation of geometry structure but should be appropriate with style information.
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