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A. Appendix
A.1. Implementation of SED on DETR.

Our method can be extended to DETR, a single feature
map detector based on anchor-free label assignment rule.
We match the predictions of input in different views accord-
ing to Hungarian algorithm, where the pair-wise matching
cost is defined as: Lmatch = DJS(p1, p2) + λLIoU(b1, b2),
where DJS(p1, p2) is JS-Divergence between the probabil-
ity vectors and LIoU is GIoU loss [10]. The python-style
pseudo-code of matching algorithm is provided in Alg. 1.
The DETR model is trained with AdamW setting the trans-
former’s learning rate to 10−4, the backbone’s learning rate
to 10−5, and weight decay to 10−4. The model is trained
with a long schedule for 300 epochs and the learning rate is
multiplied by 0.1 at 200 epochs. The other settings are the
same as DETR [1].

A.2. Stronger augmentations.

Geometric augmentations are common image data aug-
mentations. Therefore, we further conduct experiments
with stronger augmentations: color + geometric augmen-
tations, to demonstrate the extendability of SED. We sim-
ply adopt the same geometric transformations in RandAug
[3], including RandRotate, RandTranslation and RandS-
hear. We set the rand level to 5 and select only 1 transfor-
mation to apply. The results in Tab. 1 show that additional
geometric augmentations lead to incremental improvement.

A.3. Implementation and Training Details.

Our implementation is based on MMDetection frame-
work [2]. The default detector is set as Faster-RCNN [9]
with FPN [7] and ResNet-50 [5] for a fair comparison with
prior works [8, 11–14]. Code will be released.

Training Details. The weights of the backbone are
first initialized by the corresponding ImageNet-Pretrained
model, which is a default setting in existing works [6, 8,
11, 14]. All the models are trained with learning rate start-
ing at 0.01. The learning rate drops by 0.1 at the 120k and
160k iteration for 180k training schedule as default. We set
the weight decay to 0.0001, batch size to 16, and the mo-

Algorithm 1 Matching Pseudocode, PyTorch-like

1 def hungarian_match(cls_score_1, cls_score_2,
bbox_pred_1, bbox_pred_2, cls_weight,
iou_weight):

2 # cls_score: [bs, num_query, c]
3 # bbox_pred: [bs, num_query, 4]
4 cls_dist = JSCost(cls_score_1, cls_score_2)
5 iou_dist = IoUCost(bbox_pred_1, bbox_pred_2)
6 cost= cls_dist*cls_weight + iou_dist*

iou_weight
7

8 bs = cost.shape[0]
9 col_inds = []

10 for i in range(bs):
11 col_ind = linear_sum_assignment(cost[i])
12 col_inds.append(col_ind)
13 return col_inds

Method Data AP Augmentation
Supervised VOC07 74.3 -
STAC [11] VOC07+12 77.45 C, G
DGML [12] VOC07+12 78.60 -
UBT [8] VOC07+12 77.37 C
ISMT [13] VOC07+12 77.23 C, DropBlock
IT [14] VOC07+12 78.30 C, Mixup, Mosaic
Ours VOC07+12 80.60 C
Ours VOC07+12 81.44 C,G

Table 1. Results on Pascal VOC 2007 test set. AP50 is reported.
“-” means that the training details are missing in the source paper.

mentum is 0.9 for SGD optimizer. Like [8], we separate
5k/10k/12k/90k iterations from the whole process as the
burn-in phase for 5%/10%/35k/100% data protocols. For
verifying the effectiveness of our method, we simply set the
λs and λd in Eq. 1 as 0.5 and 1 separately. The EMA update
rate starts with 0.99 and steps to 0.9 at the 120k iteration,
aligned with the learning rate decay policy.

Data Augmentation. As shown in Tab. 2, the weak data
augmentation only contains random resize from (1333, 640)
to (1333, 800) and random horizontal flip with a proba-
bility of 0.5. The strong data augmentation is composed
of random Color Jittering, Grayscale, Gaussian Blur, and
Cutout [4], without any geometric augmentation.
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Strong Augmentation
Process Probability Parameters Details

Color Jittering 0.8 brightness, contrast, saturation = 0.4, 0.4, 0.4
Brightness factor is chosen uniformly from [0.6, 1.4],
Contrast factor is chosen uniformly from [0.6, 1.4],
Saturation factor is chosen uniformly from [0.6, 1.4]

Grayscale 0.2 None None
GaussianBlur 0.5 σ ∼ U(0.1, 2.0) Gaussian filter kernel size is 23

Cutout 1 0.7 scale=(0.05, 0.2), ratio=(0.3, 3.3) Randomly selects a rectangle region in an image
Cutout 2 0.5 scale=(0.02, 0.2), ratio=(0.1, 6) Randomly selects a rectangle region in an image
Cutout 3 0.3 scale=(0.02, 0.2), ratio=(0.05, 8) Randomly selects a rectangle region in an image

Table 2. Details of data augmentations.
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