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In the supplementary material, we first summarize no-
tations used in the manuscript. Then we provide exten-
sive implementation details with additional qualitative and
quantitative performance analysis. Towards reproducible
research, we will release our code and optimized network
weights. This supplementary is organized as follows:

e Section 1: Notations

e Section 2: Implementation details
— Experimental settings (Sec. 2.1)
— Reparameterization of SimT (Sec. 2.2)

— Reparameterization of weighting matrix (Sec. 2.3)

e Section 3: Experimental results
— Analysis on open-set classes (Sec. 3.1)

— Segmentation visualization of SFDA (Sec. 3.2)

1. Notations

We summarize the notations utilized in the manuscript,
as listed in Table 1.

2. Implementation details
2.1. Experimental settings

Hyper-parameters in Endovisl17—Endovis18 sce-
nario. We adopt polynomial learning rate scheduling to op-
timize the feature extractor with the initial learning rate of
le-4, while it is set as le-3 for the optimization of classi-
fier and SimT. The batch size is set as 8, and the maximum
epoch number is 30. Hyper-parameters of n, A, «, 3, v are
setas 5, 0.1, 1.0, 1.0, 0.1 in our implementation.

Detailed training and inference procedure. We adopt
DeepLab-v2 [3] backbone with encoder of ResNet-101 [5]
as our segmentation model. Given the pseudo-labeled target
domain data derived from a given black-box model f;(-),
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Table 1. Notation Table.

Symbol Description

T SimT

x Pixel

Y Pseudo label of pixel «

Y Ground truth label of pixel x

X Target domain image

f@ Pseudo label of image X,

Y; Ground truth label of image X

Xr Set of target domain images

Vr Set of target domain pseudo segmentation labels
p(y | x) Noisy class posterior probability

p(y |z Clean class posterior probability

() Balck-box model

g™ Segmentation model parameterized by w
F()wrizea  Warm-up model parameterized by w/@ed
x¢ Anchor point of class ¢

T Confident closed-set pixel

Yk Label of confident closed-set pixel xj,

Ty, Confident open-set pixels

Y., Label of confident open-set pixel x,,

X Set of confident closed-set pixels

Xu Set of confident open-set pixels

u Weighting matrix

Lst Self-training loss

Lrc Loss correction

£3mT - Volume regularization

£5mT  Anchor guidance

LmT Convex guarantee

a, B,y Regularization coefficients

we calculate the class distribution of pseudo labels C'. Dur-
ing training phase, we first warm up the whole segmentation
model to obtain f(-)ysizea With C-way output probabilities
using the generated pseudo-labeled target domain data. The
warm-up model is utilized to produce noisy class posteri-
ors for anchor points and derive confidence score for each
pixel. The classifier of segmentation model f(-)ysizea is
then extended to output (C' + n)-way clean class posterior
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probabilities, and the extended model is denoted as f(-)-
Incorporating SimT, we only update conv3 and conv4 layer
in feature extractor and (C 4 n)-way classifier through gra-
dient decent derived from corrected loss. During inference
phase, we obtain final predictions from first C'-way of the
extended model f(-),, directly.

2.2. Reparameterization of SimT (7")

To make SimT (7T") differentiable and satisfy the con-
dition of T € [0,1](CtmxC ¢ 7, — 1, we uti-
lize the reparameterization method, and the code is shown
in Listing 1. Specifically, we randomly initialize a matrix
U c R(E+M)XC a5 in lines 8-14. To preserve the diago-
nally dominant property of closed-set part of SimT (T'1.¢.),
the diagonal prior I is introduced in line 16, which has been
widely used in the literature of NTM estimation [7, 10].
Considering segmentation model tends to classify samples
into majority categories, the class distribution of pseudo la-
bels C' is involved in lines 18-20. Incorporating these prior
informations, we obtain V.= C' - o(U) + I in lines 23-24,
where o () is the sigmoid function to avoid negative value
in SimT. Then we do the normalization of T, = 0‘/7“2/’6
to derive SimT (7T’) in line 25. Since both sigmoid fllcﬁllcti(J)n
and normalization operation are differentiable, SimT can be
updated through gradient descent on U.

torch
torch.nn as nn
torch.nn.functional as F
import numpy as np
class SimT (nn.Module) :
def _ _init_ (self,
=0) :
super (SimT, self)._ _init__ ()
T = torch.ones (num_classes+open_classes,
num_classes)

import

num_classes, open_classes

self.register_parameter (name=’'NTM’, param
=nn.parameter.Parameter (torch.FloatTensor (T))

)
self.NTM # U

nn.init.kaiming_normal_(self.NTM, mode=’'
fan_out’, nonlinearity=’relu’)

self.Identity_prior = torch.cat ([torch.
eye (num_classes, num_classes), torch.zeros
open_classes, num_classes)], 0) # I

Class_dist =
AdaptSegNet_CD.npy’)

np.load(’../ClassDist/
# C

self.Class_dist = torch.FloatTensor (np.
tile(Class_dist, (num_classes + open_classes,

1)))

def forward(self):

T = torch.sigmoid(self.NTM) .cuda ()

T = T.mul (self.Class_dist.cuda() .detach()
) + self.Identity_prior.cuda().detach() # V

2 import
3 import

4

T = F.normalize (T, p=1, # SimT

return T

dim=1)
Listing 1. Reparameterization of SimT (T")

2.3. Reparameterization of weighting matrix (u)

In the proposed convex guarantee of SimT, we intro-
duce a weighting matrix w € [0, 1](€+)*(C+n) with con-
straints of w; ,—; = —1 and ), u;,+; = 1. To make
the weighting matrix w differentiable and satisfy its con-
straints, we utilize the reparameterization method, as shown
in Listing 2. To be specific, we uniformly initialize a matrix
W € R(E+m)x(C+n) except diagonal entries in lines 9-15.
The softmax operator is introduced to ensure the summa-
tion of non-diagonal entries in each row of w to be 1, as
shown in line 24. Diagonal entries are all detached and set
as -1, as in lines 17-25. Since the softmax operation is dif-
ferentiable, the weighting matrix w can be updated through
gradient descent on W.
torch
torch.nn as nn

torch.nn.functional as F
numpy as np

import

import

5 class sig_u(nn.Module) :

11

def _ _init_ (self,
=0) :
super (sig_u,

num_classes, open_classes

self).__init__ ()
self.classes = num_classestopen_classes
init = 1./ (self.classes-1.)

self.register_parameter (name=’'weight’,
param=nn.parameter.Parameter (initxtorch.ones (
self.classes, self.classes)))

self.weight # W

self.identity = torch.zeros(self.classes,
self.classes) — torch.eye(self.classes)

def forward(self):
ind = np.diag_indices(self.classes)
with torch.no_grad() :

self.weight[ind[0], ind[1]] = -10000.
* torch.ones (self.classes) .detach ()
w = torch.softmax(self.weight, dim = 1).
cuda ()
weight = self.identity.detach() .cuda() +
w # u

return weight

Listing 2. Reparameterization of weighting matrix (u)

3. Experimental results
3.1. Analysis on open-set classes

In UDA of GTA5—Cityscapes scenario, the compatible
label set shared between GTAS [ 1] and Cityscapes [4] in-
cludes 19 classes, i.e. ‘road’, ‘sidewalk’, ‘building’, ‘wall’,
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Figure 1. Qualitative results of SFDA in Endovis17—Endovis18
scenario. (a) Target image, (b) Ground truth, Predictions from (c)
source only model, (d) IGNet [§], (e) ours (SimT).

‘fence’, ‘pole’, ‘traffic-light’, ‘traffic-sign’, ‘vegetable’,
‘terrain’, ‘sky’, ‘person’, ‘rider’, ‘car’, ‘truck’, ‘bus’,
‘train’, ‘motor’, ‘bike’. In target domain (Cityscapes), 15
open-set classes, including ‘ego vehicle’, ‘rectification bor-
der’, ‘out of roi’, ‘static’, ‘dynamic’, ‘ground’, ‘parking’,
‘rail track’, ‘guard rail’, ‘bridge’, ‘tunnel’, ‘polegroup’,
‘caravan’, ‘trailer’, ‘license plate’ are unknown in source
domain (GTAS)?. In the proposed SimT, n is a hyper-
parameter that indicates the potential open-set class number,
and we set n = 15 to implicitly model the diverse semantics
within open-set classes. Considering the prior of open-set
class number is not available in real-word deployment, we
tune it in the range of {1, 5, 10, 15, 20, 25} and show the
influence of open-set class number n, as illustrated in the
upper row of Figure 1. In this experiment, we adopt Adapt-
SegNet [12] as the black-box model to generate pseudo la-
bels for target domain data. It is observed that n = 1 shows
the inferior performance. This result validates that multi-
ple open-set ways of classifier capacitate the segmentation
model to encode the diverse feature representations within
open-set regions. Moreover, we also observe that the perfor-
mance of segmentation model remains stable across a wide

range of n, indicating the robustness of the proposed SimT.

In UDA of Endovisl7—Endovis18 scenario, the com-
patible label set of instrument types shared between En-
dovis17 [2] and Endovis18 [1] includes 3 classes, i.e. ‘scis-
sor’, ‘needle driver’, ‘forceps’. In target domain (En-
dovis18), 3 open-set instrument type classes, including ‘ul-
trasound probe’, ‘suction instrument’, ‘clip applier’ are as

the unknown classes in source domain (Endovisl17). We

dhttps://github.com/mcordts/cityscapesScripts/
blob/master/cityscapesscripts/helpers/labels.py

Figure 2. Qualitative results of SFDA in GTA5—Cityscapes sce-
nario. (a) Target image, (b) Ground truth, Predictions from (c)
source only model, (d) SFDASeg [6], (e) ours (SimT).

Figure 3. Qualitative results of SFDA in Endovis17—Endovis18
scenario. (a) Target image, (b) Ground truth, Predictions from (c)
source only model, (d) SFDASeg [6], (e) ours (SimT).

tune the open-set class number n in the range of {1, 2, 3, 4,
5, 6}, and the comparison results are shown in the lower row
of Figure 1. In this experiment, the black-box model is bor-
rowed from IGNet [8] to generate pseudo labels for target
domain data. It is clear that the verification performance of
segmentation model with various n settings remains stable
within a wide range.

3.2. Segmentation visualization of SFDA

In Figure 2, we present segmentation results on the
SFDA semantic segmentation task in GTA5—CityScapes
scenario. As shown in the figure, the source only model (c)
produces the worst segmentation results, since the extracted
features for target data are not discriminative enough. The
baseline SFDA model (d) [6] obtains more precise seg-
mentation predictions in comparison to the source only
model, but is error-prone in some ambiguous categories
(e.g., ‘rider’ and ‘bike’, ‘road’ and ‘sidewalk’) and small-
scale objects (e.g., ‘traffic sign’). In the results of our SimT
approach, these mistakes are effectively mitigated, result-
ing in more reasonable segmentation predictions. We con-
jecture the reason is that our method can adaptively model
the noise distribution of pseudo labels in target domain and
learn the discriminative feature representation of target data



with the corrected supervision signals.

We provide segmentation results on the SFDA semantic
segmentation task of Endovisl7—Endovis18 in Figure 3.
The qualitative results show that without adaptation (source
only model), it is difficult to correctly identify the surgi-
cal instruments due to the limited discriminative capability
on the target data. The predicted instrument regions are
fragmentary, deteriorating the segmentation performance.
Compared with the baseline SFDA model (d) [6], the pro-
posed approach (e) generates more semantically meaningful
segmentation results, demonstrating the superior property
of SimT in alleviating the noise issues in SFDA task.
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