
Supplementary Material
ELIC: Efficient Learned Image Compression with Unevenly Grouped Space-Channel Contextual Adaptive Coding

1. Detailed network architecture
1.1. Architecture of transform networks

Analyzer ga Synthesizer gs

in: 3-channel image in: M -channel symbols

Conv 5× 5, s2, N Attention
ResBottleneck×3 TConv 5× 5, s2, N
Conv 5× 5, s2, N ResBottleneck×3
ResBottleneck×3 TConv 5× 5, s2, N

Attention Attention
Conv 5× 5, s2, N ResBottleneck×3
ResBottleneck×3 TConv 5× 5, s2, N
Conv 5× 5, s2, M ResBottleneck×3

Attention TConv 5× 5, s2, 3

Table 1. Architecture of ELIC main transform networks.

Analyzer ga Synthesizer gs

in: 3-channel image in: M -channel symbols

Conv 5× 5, s2, N TConv 5× 5, s2, N
ResBottleneck×1 ResBottleneck×1
Conv 5× 5, s2, N TConv 5× 5, s2, N
ResBottleneck×1 ResBottleneck×1
Conv 5× 5, s2, N TConv 5× 5, s2, N
ResBottleneck×1 ResBottleneck×1
Conv 5× 5, s2, M TConv 5× 5, s2, 3

Table 2. Architecture of ELIC-sm main transform networks.

As shown in Table 1 and Table 2, our main networks are
adapted from those previously used by Ballé et al. (2018),
Minnen et al. (2018) and Minnen et al. (2020). We replace
GDN/IGDN layers by residual blocks, as mentioned in the
main text. We follow previous works to introduce a vari-
able N representing the channel number of intermediate
features, and lift the output channel number of analyzer to
M . Thus, the coding-symbol ŷ is an H ×W ×M tensor.

We adopt residual bottleneck structures as nonlinear
transform, which have a dimensional bottleneck which can

both provide larger receptive field and keep the volume of
calculation acceptable. The channel number of intermedi-
ate features before and after 3× 3 convolution is N

2 . We se-
quentially stack 3 such residual blocks after each down/up-
sampling convolution in ELIC (Table 1), and instead use
only one at each position in ELIC-sm (Table 2). We also
use the attention modules adopted by Cheng et al. in the
larger ELIC models to further enhance the nonlinearity.

We simply adopt the three-layer hyper analyzer and syn-
thesizer, following previous works (Minnen et al., 2018;
Minnen et al., 2020; He et al., 2021). The hyper synthe-
sizer output is an H × W × (2M) tensor Ψ as shown in
Figure 7 in the main text.

1.2. Architecture of SCCTX networks

Following Minnen et al. (2020), we use 5 × 5 con-
volutions to analyze cross-channel redundancy. The ar-
chitecture of gch network is frankly sketched from Min-
nen et al. (2020). We follow the suggestions of Min-
nen et al. (2018) and He et al. (2021) and use single-
layer 5 × 5 autoregressive/checkerboard-masked convolu-
tion as spatial context model gsp. Both g

(k)
sp and g

(k)
ch output

H × W × (2M (k)) features, where M (k) is the channel
number of the k-th channel group.

Therefore, we have the concatenated adaptive represen-
tation tensor [Φ(k)

sp,i,Φ
(k)
ch ,Ψ] ∈ RH×W×(4M(k)+2M). The

parameter aggregation network linearly reduces the dimen-
sions to 2M (k).

2. Detailed experimental settings

We implement, train, and evaluate all learning-based
models on PyTorch 1.8.1. We use NVIDIA TITANXP to
test both RD performance and inference speed. To test the
speeds, we reproduce previously proposed models and eval-
uate them under the same running conditions for fair com-
parison. Since most of the models adopt reparameterization
techniques, we fix the reparameterized weights before test-
ing the speed. We follow a common test protocol to test
the latency with GPU synchronization. When testing each
model, we drop the latency results (we do not drop them
when evaluating RD performance) of the first 6 images to
get rid of the influence of device warm-up, and average the

1

running time of remained images to get the precious speed
results.

We do not enable the deterministic inference mode (e.g.
torch.backends.cudnn.deterministic) when
testing the model speeds for two reasons. First, we tend
to believe that the deterministic issue can be well solved
with engineering efforts, such as using integer-only infer-
ence. Thus, the deterministic floating-point inference is un-
necessary. Second, the deterministic mode extremely slows
down the speed of specific operators, like transposed con-
volutions which are adopted by ELIC and earlier baseline
models (Ballé et al. and Minnen et al.), making the compar-
ison somewhat unfair.

We obtain the RD results of prior works by asking the
authors via emails or accessing released data directly.

2.1. Visualization explanation

We visualize the coding-symbols to investigate the in-
formation compaction property. The visualization results of
the lighthouse image is shown in Figure 2 of the main text.
The ℓ-th gray scale image is the rescaled magnitude f ℓ of
the ℓ-th symbol channel ŷ(ℓ):

f (ℓ) =
|ŷ(ℓ)|
max ŷ

, ℓ = 1, 2 . . . ,M (1)

Inspired by the concept of energy in the signal process-
ing community, we introduce the term energy to describe
the average square value of each symbol channel:

e(ℓ) =
1

HW

∑
ŷ
(ℓ)
i ∈ŷ(ℓ)

ŷ
(ℓ)2
i (2)

In the main text, Figure 2 presents the channels with the
largest energy values. Figure 3-left further shows the loga-
rithmic energy log(e) of each channel.

3. More rate-distortion results
We also calculate the BD-rate over VVC when adopting

MS-SSIM as the distortion metric. The results are shown
in Table 3. Several baselines are skipped since the original
authors do not provide the MS-SSIM results evaluated on
the MSE-optimized models.

For completeness, we evaluate our ELIC model at larger
BPP range (from 1.0 to 1.5 on Kodak). We train these mod-
els with λ = {0.08, 0.16}. The high-rate models still per-
form well. We draw the results on larger RD curves (Fig-
ure 1 for PSNR and Figure 2 for MS-SSIM) to more clearly
show the superiority of the proposed approach. We also
evaluate the models on CLIC-Professional and report Fig-
ure 3.

We further evaluate our model performance when op-
timizing for MS-SSIM, following prior works. Thus, the

Model BD-Rate (%) BD-Rate (%)
(PSNR) (MS-SSIM in dB)

ELIC (ours) -7.88 -12.73
ELIC-sm (ours) -1.07 -5.59
Minnen2020 1.11 -
Cheng2020[P] 3.89 -7.19
Minnen2018[P] 20.00 4.23
Ballé2018 40.85 16.41

Gao2021 -10.94 -
Guo2021 -7.02 -
Wu2021 [43] -5.71 -
Xie2021 -0.54 -7.82
Cheng2020 3.35 -3.17
Minnen2018 14.92 -0.68

VVC 0.00 0.00

Table 3. BD-rates over VVC for learned image compression mod-
els. The BD-Rate data is calculated from rate-distortion curves
over data points with BPP < 1 on Kodak. We present results
of two distortion metrics, PSNR and MS-SSIM in dB. Models
marked with [P] adopt parallel checkerboard context model and
[S] denotes serial context model.

distortion term of the loss function is replaced by 1 −
MSSSIM(x). We use λ = {3, 12, 40, 120} to train such
models, following Cheng et al. (2020). Figure 4 shows the
results. On Kodak, when achieving the same MS-SSIM,
ELIC optimized for MS-SSIM saves about half of the bit-
rate compared with VVC, which is encouraging.

4. Image reconstruction results
See Figures 5,6, we compare the reconstruction results

of the proposed ELIC and Cheng et al. (2020), since their
synthesis latency is close. We also present the decoded im-
age of VTM12.1 for reference.

5. Progressive decoding
In the main text, we present progressive decoding results

with thumbnail synthesizer and zero filling. In Figures 7,8,
We further show progressive decoding results with full syn-
thesizer and/or mean filling.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Bits Per Pixel

25.0

27.5

30.0

32.5

35.0

37.5

40.0

PS
N

R

ELIC (ours)
ELIC-sm (ours)
Cheng2020[P]
Minnen2020
Minnen2018[P]

Ballé2018
VVC/VTM
BPG (4:4:4)
JPEG

Figure 1. PSNR-BPP curve on Kodak. All models are optimized for minimizing MSE. All presented learning-based models can decode
the 512× 768 Kodak image in 100 microseconds.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Bits Per Pixel

8

10

12

14

16

18

20

22

M
S-

SS
IM

 in
 d

B

ELIC (ours)
ELIC-sm (ours)
Cheng2020[P]
Minnen2018[P]

Ballé2018
VVC/VTM
BPG (4:4:4)
JPEG

Figure 2. MS-SSIM RD curve on Kodak. All models are optimized for minimizing MSE. All presented learning-based models can
decode the 512× 768 Kodak image in 100 microseconds.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Bits Per Pixel

28

30

32

34

36

38

40

42
PS

N
R

ELIC (ours)
ELIC-sm (ours)
Cheng2020[P]

Minnen2018[P]
Ballé2018
VVC/VTM

Figure 3. PSNR-BPP curve on CLIC-Professional. All models are optimized for minimizing MSE. All presented learning-based models
can decode the 512× 768 Kodak image in 100 microseconds.

0.2 0.4 0.6 0.8 1.0
Bits Per Pixel

10

12

14

16

18

20

22
M

S-
SS

IM
 in

 d
B

ELIC [opt.MS-SSIM] (ours)
Cheng2020[P] (opt.MS-SSIM)
Minnen2018[P] (opt.MS-SSIM)
Ballé2018 [opt.MS-SSIM]

VVC/VTM
BPG (4:4:4)
JPEG

Figure 4. MS-SSIM RD curve on Kodak (opt. MS-SSIM). All models are optimized for maximizing MS-SSIM. All presented learning-
based models can decode the 512× 768 Kodak image in 100 microseconds.

(a) Cheng et al. (2020). BPP= 0.129. PSNR= 29.36 (b) Ours. BPP= 0.144. PSNR= 30.42

(c) Ground-truth. (d) VTM12.1. BPP= 0.151. PSNR= 30.28

Figure 5. Qualitative comparison on reconstructed lighthouse (kodim19) image.

(a) Cheng et al. (2020). BPP= 0.155. PSNR= 29.85 (b) Ours. BPP= 0.127. PSNR= 31.66

(c) Ground-truth. (d) VTM12.1. BPP= 0.151. PSNR= 31.65

Figure 6. Qualitative comparison on reconstructed sculpture (kodim17) image.

Figure 7. Progressive decoding results (kodim05).
Line 1 (thumb-zero): the first 4 groups are decoded with thumbnail decoder and zero filling (the same setting as the main text).
Line 2 (thumb-mean): the thumbnail-decoding results with mean filling.
Line 3 (full-zero): all the 5 groups are decoded with full synthesizer, using zero filling.
Line 4 (full-mean): the full-decoding results with mean filling.

Figure 8. Progressive decoding results of the house image (kodim24). The image order is the same as Figure 7.

	. Detailed network architecture
	. Architecture of transform networks
	. Architecture of SCCTX networks

	. Detailed experimental settings
	. Visualization explanation

	. More rate-distortion results
	. Image reconstruction results
	. Progressive decoding

