
Supplementary: Safe-Student for Safe Deep Semi-Supervised Learning with
Unseen-Class Unlabeled Data

1. The Proof of Theorem 1

Proof. The change of outer-level objective from iteration
t to t+ 1 is:
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For simplicity, let ηθs = η. Suppose θas , θ

b
s ∈ W . Then

we can know ∥θas − θbs∥ ≤ Γ, and ∥∇θsL (θs) ∥ ≤ ρ. Let
arbitrary θs ∈ W , and we can know
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And because loss function L is Lipschitz-smooth, we can
know
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By summing Eq. (3) from t = 1 to T , we can get
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According Jensen inequation, we can know
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Then, we can get
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2. The Further Analysis of Energy-
Discrepancy and Energy

Through the body, we can know

E(x) = − log
[
efy(x) ·

(
ef1(x)−fy(x) + · · ·+ efK(x)−fy(x)

)]
= − log efy(x) − log

(
ef1(x)−fy(x) + · · ·+ efK(x)−fy(x)

)
≈ −fy(x) ,

(7)
and
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The overall loss is defined as follows,

L = LCE + λ1LCBE + λ2LUCD , (9)

where the first two items can be approximatively considered
as cross-entropy loss operating on seen classes, and the last
item is a constraint on unseen classes. Suppose (xi, y) is a
seen-class instance. Then, we can know
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Minimizing LCE is equivalent to enlarging fy (xi) and re-
ducing the other logits, which enlarges ED scores of seen-
class instances. Suppose xi is an unseen-class instance.
Then, we can know
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For simplicity, we leave out ω(xu

i ). Then, we can know,
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Minimizing LUCD is equivalent to enlarging∑K

t=1 log
eft(xi)∑K
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. Besides, we know that∑K

t=1
eft(xi)∑K

j=1 efj(xi)
= 1.

∑K
t=1 log

eft(xi)∑K
j=1 efj(xi)

can obtain maximum when eft(xi)∑K
j=1 efj(xi)

= 1
K , and

ft1 (xi) − ft2 (xi) = 0, where ∀t1, t2 ∈ {1, · · · ,K},
and t1 ̸= t2. Minimizing LUCD will reduce ED scores of
unseen-class instances.

In summary, the final loss function Eq. (9) is aimed at
enlarging ED of seen classes by the first two items and min-
imizing ED of unseen classes by the last item, which veri-
fies the consistency between the optimization objective and
our proposed scoring function ED. On the contrary, energy
focuses on the maximum logit, which is inconsistent with
optimization objective.

3. Algorithm
As shown in Algorithm 1, SAFE-STUDENT contains

five modules: teacher pre-training module to obtain a
teacher model that serves as a mentor for the student model,
seen and unseen classes identification module to select
reliable seen-class and unseen-class instances, seen-class
learning module to achieve the seen-class classification,
unseen-class label distribution learning module to mitigate
the adverse effects of unseen classes, iterative optimization
strategy helps the teacher model improve the identification
of unseen classes and helps the student model improve the
performance of seen-class classification.

4. Datasets
We evaluate SAFE-STUDENT on image classification

datasets: MNIST [3], CIFAR-10 [2], CIFAR-100 [2] and
TinyImageNet (a subset of ImageNet [1]), with different ra-
tios of class mismatch.

Algorithm 1: SAFE-STUDENT.
input : Labeled data set DL, unlabeled data set

DU , student model θs, teacher model θt,
max iterations I, max epochs E

output: θs, θt
1 /*Teacher Pre-training:*/
2 for e = 1 to E do
3 compute LCE in Eq. (1)
4 update θt← SGD with loss LCE

5 /*Iterative Optimization:*/
6 for i = 1 to I do
7 for epoch = 1 to E do
8 /*Seen and Unseen Classes Identification:*/
9 collect energy-discrepancy ED(xu

i ) for xu
i by

θt and Eq. (4)
10 obtain Dsc, Duc by energy-discrepancy
11 /*Seen-Class Learning:*/
12 obtain pseudo label ỹui and probability

distribution p̃ui of instances xu
i by θt

13 compute LCBE by p̃ui , ỹui , Dsc, θs, and
Eq. (9)

14 compute LCE in Eq. (1)
15 /*Unseen-Class Label Distribution Learning:*/
16 obtain uniform distribution U(y)
17 compute LUCD by Duc, U(y), θs, and

Eq. (10)
18 obtain final loss L in Eq. (12)
19 update θs← SGD with loss L
20 update θt← θs

• MNIST includes 60,000 training images and 10,000 test-
ing images of size 28 × 28, which contains 10 classes
from digit ’0’ to digit ’9’. Concretely, we respectively
select ten images from digit ’0’ to digit ’5’ to construct
the labeled data set DL, i.e., a total of 60 labeled data,
and select 30,000 images in total from digit ’0’ to digit
’9’ as unlabeled data DU . We adjust the ratio of unseen-
class images in the unlabeled data to modulate class dis-
tribution mismatch. For example, when the extent of la-
beled/unlabeled class mismatch ratio is 0%, all unlabeled
data come from digit ’0’ to digit ’5’.

• CIFAR-10 includes 60,000 training images and 10,000
testing images of size 32 × 32 which contains ten cat-
egories: “airline”, “automobile”, “bird”, “cat”, “deer”,
“dog”, “frog”, “horse”, “ship”, and “trunk”. Our exper-
iment carries out six-class classification tasks. We con-
sider animal categories (birds, cats, deer, dogs, frogs, and
horses) as seen classes and the rest as unseen classes.
We select 400 images from each seen category to con-
struct the labeled data set DL, i.e., 2400 labeled instances.
Meanwhile, 20,000 images in total are randomly selected



Table 1. ACC(%) for λ1 with different values on MNIST.

λ1 0.1 0.5 1 5 10

ACC 96.2±0.2 96.7±0.3 97.2±0.3 95.1±0.1 92.1±0.2

as the unlabeled data set DU from all the ten categories.
We adjust the ratio of unseen-class images in the unla-
beled data to modulate class distribution mismatch.

• CIFAR-100 includes 50,000 training images and 10,000
testing images of size 32 × 32 which contains 100 cat-
egories. We use the first half categories (1-50) as seen
classes, and the remaining classes as unseen classes. We
select 100 images from each seen category to construct
the labeled data set DL, i.e., 5000 labeled instances.
Meanwhile, 20,000 images in total are randomly selected
as the unlabeled data set DU from all the 100 categories
with different ratios of unseen classes.

• TinyImageNet contains 200 categories which includes
500 training images and 50 testing images in each cat-
egory. We resize all images to 32 × 32. We use the first
100 categories as seen classes, and the remaining classes
as unseen classes. We select 100 images from each seen
category to construct the labeled data set DL, i.e., 10000
labeled instances. Meanwhile, 40,000 images in total are
randomly selected as the unlabeled data set DU from all
the 200 categories with different ratios of unseen classes.

4.1. The Result in CIFAR-100

Fig. 1 reports the averaged accuracy on CIFAR-100 over
five runs with the different class mismatches. Firstly, our
proposed SAFE-STUDENT significantly outperforms ex-
isting deep SSL methods. For example, when the mis-
match ratio is 40%, our method achieves 68.3% averaged
accuracy, about 9.7% higher than the supervised learning
method, about 9.5% higher than Pi-Model, about 8.3%
higher than Pseudo-Labeling, about 6.9% higher than VAT,
and about 5.1% higher than CL. These results verify that
our method achieves the best performance compared with
the deep SSL methods and the safe deep SSL methods on
the SDU problem. These results verify the effectiveness of
SAFE-STUDENT.

4.2. Sensitivity of Hyperparameter

λ1, λ2 are coefficients in final optimization goal. Table. 1
shows the results of λ1 under different values. Table. 2
shows the results of λ2 under different values. These ex-
periments are based on the 50% ratio of class mismatch on
MNIST. The results show that it is important to choose the
appropriate parameters for λ1, λ2.

4.3. Unseen Class Identification

Fig. 2 exhibits the distributions of the four scoring func-
tions on the MNIST under the 0% ratio of class mis-
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Figure 1. Seen-class classification accuracy (%) of SAFE-
STUDENT and compared deep SSL methods on CIFAR-100 with
different class mismatch ratios between labeled and unlabeled
data. Shaded regions indicate standard deviation over five runs.

Table 2. ACC(%) for λ2 with different values on MNIST.

λ2 0.01 0.05 0.10 0.15 0.20 0.25

ACC 96.7±0.3 97.2±0.3 95.2±0.2 94.6±0.3 93.8±0.3 91.7±0.4

match in DU by SAFE-STUDENT. In-distribution denotes
seen classes, and out-of-distribution denotes unseen classes.
Fig. 3 exhibits the distributions of the four scoring functions
on the MNIST under the 60% ratio of class mismatch in DU

by SAFE-STUDENT. Fig. 4 exhibits the distributions of the
four scoring functions on the MNIST under the 60% ratio
of class mismatch in DU by DS3L. Fig. 5 exhibits the dis-
tributions of the four scoring functions on the MNIST un-
der the 60% ratio of class mismatch in DU by probability
estimation method. These results prove that our proposed
energy-discrepancy outperforms the other scoring functions
and owns the greater ability to identify unseen classes.

4.4. Energy and Energy-Discrepancy

Fig. 6 shows the accuracy on CIFAR-100 using energy
or energy-discrepancy in the SUCI model. We can observe
that energy-discrepancy more effectively identifies seen and
unseen classes under different class distribution mismatch
ratios.
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Figure 2. The distribution of four scoring functions under the 0% ratio of
class mismatch in DU by SAFE-STUDENT.
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Figure 3. The distribution of four scoring functions under the 60% ratio of
class mismatch in DU by SAFE-STUDENT.
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Figure 4. The distribution of the ED and negative energy under the 60%
ratio of class mismatch in DU by DS3L.
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Figure 5. The distribution of four scoring functions by probability estima-
tion method.
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Figure 6. Seen-class classification accuracy (%) of SAFE-
STUDENT on CIFAR-100 with energy or energy-discrepancy un-
der different mismatch ratios between labeled and unlabeled data.
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