
iPLAN: Interactive and Procedural Layout Planning-Supplementary Material

Feixiang He
University of Leeds, UK

scfh@leeds.ac.uk

Yanlong Huang
University of Leeds, UK
y.l.huang@leeds.ac.uk

He Wang *

University of Leeds, UK
h.e.wang@leeds.ac.uk

1. Architecture of BCVAE
The detailed architecture of BCVAE is illustrated in

Tab. 1. For a given layout, Q = {qk}Kk=1 represents room
types, where K denotes the number of room types in D and
qk ∈ Z corresponds to the number of rooms under the k-th
type.

Before feeding Q into BCVAE, a reformulation is im-
plemented. We first determine the largest number of rooms
for each type k across the whole dataset and denote it as
q∗k ∈ Z. Then, for each qk ∈ Q (qk ≤ q∗k), we transform it
into a q∗k-D vector, i.e., vk, whose first qk elements are set
as 1 while the remaining elements as 0. By concatenating
all transformed vectors, we can obtain an alternative repre-
sentation of Q, i.e., V = [vT

1 v
T
2 . . .vT

K]T .
We denote the output of BCVAE as V̂ and use binary

cross entropy as the reconstruction loss:

Lrec =

n c∑
j=1

lj , lj = −[vj logv̂j +(1−vj)log(1− v̂j)], (1)

where n c =
∑K

i=1 q
∗
k represents the length of V .

The total loss of BCVAE is:

L = Lrec + λDKL(N (µ,Σ)||N (0, I)), (2)

where DKL denotes the Kullback–Leibler (KL) divergence,
λ = 0.5.

2. Post-Processing for Room Partitioning Pre-
diction

After the room partitioning prediction, sometimes
gaps may exist between the predicted rooms R̂ =
{r̂1, r̂2, . . . , r̂N}. We employ a simple post-processing step
to ensure that the interior area of B is fully covered and the
room bounding boxes are located within B. We formulate
it as a generic optimization problem:

argmin
R̂

L = argmin
R̂

Lcoverage(R̂,B) + Linterior(R̂,B)

(3)

*Corresponding author

where Lcoverage and Linterior constrain the spatial consis-
tency between B and the room bounding box set R̂ .

To explain Lcoverage and Linterior clearly, we introduce
a distance function d(p, r) to measure the coverage of a
point p by a box r:

d(p, r)=

{
0, if p ∈ Ωin(r)

minq∈Ωbd(r) ||p− q||, otherwise
(4)

where Ωin(r) denotes the interior area of the box r and
Ωbd(r) represents the boundary of r.

The coverage loss can be defined as:

Lcoverage(R̂,B) =

∑
p∈Ωin(B) mini d

2(p, r̂i)

|Ωin(B)|
, (5)

where |Ωin| is the number of pixels in the set Ωin(B).
The interior loss can be denoted as follows:

Linterior(R̂,B) =

∑
i

∑
p∈Ωin(r̂i)

d2(p, B̂)∑
i |Ωin(r̂i)|

, (6)

where B̂ is the bounding box of the boundary. Note that
B ⊆ B̂.

Therefore, in the inference stage, we directly adjust the
predicted rooms R̂ = {r̂1, r̂2, . . . , r̂N} by minimizing the
loss L in Eq. (3).

3. Additional Qualitative Comparisons
Fig. 1 and Fig. 2 show qualitative results on RPLAN and

LIFULL, respectively. In both datasets, Graph2Plan and
OurI are provided with the full human input (including the
boundary, room types and room locations), their generated
layouts are expected to be similar to the GT. While it is
the case for OurI , it doesn’t seem to be so for Graph2Plan.
The shaded areas on the layouts produced by Graph2Plan
show clear differences from the GT layouts. In contrast, the
layouts from OurI are nearly the same as the GT.

In addition, we also compare iPLAN with other meth-
ods on a more challenging dataset, LIFULL. When only
the house boundary is provided, OurIII outperforms Rplan.
OurII corresponds to the case when the house boundary and

1

Architecture Layer Specification Output Size

embedding network

conv bn relu1 1× 16× 4× 4(s = 2, p = 1) 64× 64× 16
conv bn relu2 16× 16× 4× 4(s = 2, p = 1) 32× 32× 16
conv bn relu3 16× 32× 4× 4(s = 2, p = 1) 16× 16× 32
conv bn relu4 32× 32× 4× 4(s = 2, p = 1) 8× 8× 32
conv bn relu5 32× 16× 4× 4(s = 2, p = 1) 4× 4× 16
conv bn relu6 16× 16× 4× 4(s = 2, p = 1) 2× 2× 16

flatten N/A 1× 64

encoder

concat N/A 1× (n c+ 64)
linear relu1 (n c+ 64)× 128 1× 128
linear relu2 128× 64 1× 64
linear31 64× 32 1× 32
linear32 64× 32 1× 32

decoder

concat N/A 1× 96
linear relu1 96× 96 1× 96
linear relu2 96× 64 1× 64

linear3 64× n c 1× n c
sigmoid N/A 1× n c

Table 1. The BCVAE architectural specification. s and p respectively denote stride and padding. n c is the dimension of house type.
Convolution kernels and layer output are separately specified by (Nin ×Nout ×W ×H) and (W ×H × C).

Figure 1. Qualitative comparisons on RPLAN. Shaded areas indicate design choices that are questionable.

the room types are known, which achieves slightly better
predictions than OurIII as more information is fed. Fur-
thermore, if the full human input is provided, OurI performs
better than OurII . Note that OurI is superior to Graph2Plan
which is also fed with the full human input.

4. Additional Generalization Evaluations

More generalization results on RPLAN are presented in
Fig. 3. The first row and second row correspond to Rplan
and OurIII , respectively. OurIII achieves better results.
Consistent with our analysis in the main paper, Rplan is
prone to splitting the public area into two main areas, caus-
ing potential inconvenience for family activities (the first

Figure 2. Qualitative comparisons on LIFULL. Shaded areas indicate design choices that are questionable.

Figure 3. Layouts with non-axis aligned edges. Left: successful examples. Right: Rplan fails but our model succeeds.

two columns in Fig. 3). Sometimes, Rplan also fails to plan
a bathroom in the layout (the third column in Fig. 3). More-
over, on some boundaries, Rplan fails to design the layouts
(the last three columns in Fig. 3). In general, OurIII out-
performs Rplan when the boundary is non-axis aligned.

5. Implementation Details
We have implemented iPLAN in PyTorch. All models

are trained and tested on a NVIDIA GeForce RTX 2080
Ti. It takes about two hours to train BCVAE, two days to
optimize the room-locating network and one day to train
the room area prediction model.

