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1. Architecture of BCVAE

The detailed architecture of BCVAE is illustrated in
Tab. 1. For a given layout, @ = {qx}&_, represents room
types, where K denotes the number of room types in D and
gk € Z corresponds to the number of rooms under the k-th
type.

Before feeding @ into BCVAE, a reformulation is im-
plemented. We first determine the largest number of rooms
for each type k across the whole dataset and denote it as
gj, € Z. Then, for each ¢, € Q (g < gj), we transform it
into a g;-D vector, i.e., vy, whose first g elements are set
as 1 while the remaining elements as 0. By concatenating
all transformed vectors, we can obtain an alternative repre-
sentation of Q, i.e., V = [vlv .. 0%]T.

We denote the output of BCVAE as V and use binary
cross entropy as the reconstruction loss:

n-c

Lrec = le, l; = —[v;logt; + (1 —v;)log(1—10;)], (1)
j=1

where n_c = Zf{:l q;, represents the length of V.
The total loss of BCVAE is:

L= Lrec + ADrr(N(p, Z)|IN(0, 1)), )

where D 1, denotes the Kullback—Leibler (KL) divergence,
A=0.5.

2. Post-Processing for Room Partitioning Pre-
diction

After the room partitioning prediction, sometimes
gaps may exist between the predicted rooms R =
{F1,72,...,7n}. Weemploy a simple post-processing step
to ensure that the interior area of B is fully covered and the
room bounding boxes are located within B. We formulate
it as a generic optimization problem:

arg }rnin L= arg min Lcoverage(Ra B) + Einterior(Rv B)
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where Lcoyerage and Linterior constrain the spatial consis-
tency between B and the room bounding box set R.

To explain Leoperage and Linterior clearly, we introduce
a distance function d(p,r) to measure the coverage of a
point p by a box r:

otherwise

d(p,7) :{ )

miande('f‘) ||p - qu

where €;,,(r) denotes the interior area of the box r and
Qpq(r) represents the boundary of .
The coverage loss can be defined as:

. 2 peq, (B) Min; d*(p, 7;)

Ecovera e(R7 B) = P (5)
g |Qin(B )|
where |€;,,| is the number of pixels in the set Q;, (B).
The interior loss can be denoted as follows:
R ) e d2(p, B
£i7lt€Ti0T(R7 B) = ZZ ZPEQW('M) ( ) (6)

> [Qin (7)) ’

where B is the bounding box of the boundary. Note that
BCB.

Therefore, in the inference stage, we directly adjust the
predicted rooms R = {#,%s,...,7x} by minimizing the
loss £ in Eq. (3).

3. Additional Qualitative Comparisons

Fig. 1 and Fig. 2 show qualitative results on RPLAN and
LIFULL, respectively. In both datasets, Graph2Plan and
Our; are provided with the full human input (including the
boundary, room types and room locations), their generated
layouts are expected to be similar to the GT. While it is
the case for Oury, it doesn’t seem to be so for Graph2Plan.
The shaded areas on the layouts produced by Graph2Plan
show clear differences from the GT layouts. In contrast, the
layouts from Our; are nearly the same as the GT.

In addition, we also compare iPLAN with other meth-
ods on a more challenging dataset, LIFULL. When only
the house boundary is provided, Our;; outperforms Rplan.
Our;; corresponds to the case when the house boundary and



Architecture Layer Specification Output Size
convbnreluy 1x16x4x4(s=2,p=1) 64 x64x16
convbnreluy 16 x 16 x4 x4(s=2,p=1) 32x32x16

. convbn_relus 16 x32x4x4(s=2,p=1) 16 x 16 x 32
embedding network convbn_reluy 32x32x4x4(s=2,p=1) 8 x 8 x 32
conv_bn_relus 32x 16 x4 x 4(s=2,p=1) 4x4x16
conv_bn_relug 16 x 16 x 4 x 4(s =2,p=1) 2x2x16
flatten N/A 1x64
concat N/A 1 X (n-c+ 64)
linear_relul (nc+ 64) x 128 1x 128
encoder linear_relu2 128 x 64 1 x 64
linearsy 64 x 32 1 x 32
linearss 64 x 32 1 x 32
concat N/A 1x96
linear_relul 96 x 96 1 x 96
decoder linear_relu2 96 x 64 1 x 64
linears 64 X n_c 1 xnec
sigmoid N/A 1xnc

Table 1. The BCVAE architectural specification. s and p respectively denote stride and padding. n_c is the dimension of house type.
Convolution kernels and layer output are separately specified by (Nin X Noywt X W x H) and (W x H x C).
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the room types are known, which achieves slightly better 4. Additional Generalization Evaluations
predictions than Our;;; as more information is fed. Fur-
thermore, if the full human input is provided, Our; performs
better than Our;;. Note that Our; is superior to Graph2Plan

which is also fed with the full human input.

More generalization results on RPLAN are presented in
Fig. 3. The first row and second row correspond to Rplan
and Ouryyy, respectively. Ouryr; achieves better results.
Consistent with our analysis in the main paper, Rplan is
prone to splitting the public area into two main areas, caus-
ing potential inconvenience for family activities (the first
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Figure 2. Qualitative comparisons on LIFULL. Shaded areas indicate design choices that are questionable.
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Figure 3. Layouts with non-axis aligned edges. Left: successful examples. Right: Rplan fails but our model succeeds.

two columns in Fig. 3). Sometimes, Rplan also fails to plan 5. Implementation Details
a bathroom in the layout (the third column in Fig. 3). More-
over, on some boundaries, Rplan fails to design the layouts
(the last three columns in Fig. 3). In general, Our;;; out-
performs Rplan when the boundary is non-axis aligned.

We have implemented iPLAN in PyTorch. All models
are trained and tested on a NVIDIA GeForce RTX 2080
Ti. It takes about two hours to train BCVAE, two days to
optimize the room-locating network and one day to train
the room area prediction model.



