Pyramid Adversarial Training Improves ViT Performance
SUPPLEMENTARY MATERIALS

Thanks for viewing the supplementary material, in which we provide a detailed explanation of the pyramid structure in
Section 1, detailed experiments for different backbones in Section 2, more ablation study in Section 3, additional analysis in
Section 4, visualizations in Section 5, and finally a discussion on the effect of optimizers in Section 6.

1. Pyramid Attack Details
In this section, we provide a conceptual description and pseudocode for the pyramid attack.

Description Scale s determines the size of the patch that an individual perturbation parameter will be applied to; e.g. for
s$=16, we learn and add a single adv parameter to each non-overlapping patch of size 16x16. The application is equivalent to
a nearest neighbor resize on the 14x14 adv tensor to the image size of 224x224 and then addition. The scales s and multipliers
mg used by PyramidAT are hyperparameters.

Code We provide a minimal implementation of our technique in Fig. 1.

import jax
import jax.numpy as Jjnp

H=224,1r=1/255, M=[20,10,1], S=[32,16,1], BOUNDS=[0, 1], n_steps=5
def get_attacked_image (model, loss_fn, image):
def get_perturbed_image (delta) :
return image + sum(
M[i]*jax.image.resize(deltali]l, (H,H,3), 'nearest')
for i1 in delta)
def get_perturbed_loss(delta):
return loss_fn (model (get_perturbed_image (delta)))
delta = {i: Jjnp.zeros((H/s, H/s, 3)) for (i,s) in enumerate(S)}
for _ in range(n_steps):
delta_grad = jax.grad(get_perturbed_loss) (delta)
delta = {i: deltal[i]l+lr*jnp.sign(delta_grad[i]) for i in delta}
perturbed_image = get_perturbed_image (delta)
return jnp.clip (perturbed_image, BOUNDS[0O], BOUNDS[1])

Figure 1. Implementation of our technique in JAX.

2. Discussing Backbones

2.1. ResNets

Table 1 shows results for multiple variants of ResNet [18]: ResNet-50, ResNet-101, and ResNet-200. As the capacity
of the network increases, we observe larger gains from both PixelAT and PyramidAT. PyramidAT performs the best on all
evaluation sets.
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For these runs, we follow the training protocol and network details set up in [61]. We use the proposed split BN and
standard ResNet training: 90 epochs, cosine learning rate at 0.1 with linear warmup for 7 epochs, minimal augmentations
(left right flip and Inception crop). For network optimization, we use SGD with momentum and for the adversarial steps, we
use SGD.

Out of Distribution Robustness Test

Method ImageNet  Real A Cl ObjectNet V2 Rendition  Sketch  Stylized
ResNet-50 76.70 83.11 | 449 7490 26.47 64.31 36.24 23.44 6.41
+Pixel AT 77.37 84.11 | 6.03 66.88 27.80 65.59 41.75 27.04 8.13
+Pyramid AT 77.48 84.22 | 6.24 66.77 27.91 65.96 43.32 28.55 8.83
ResNet-101 78.44 8429 | 6.16 69.75 29.31 66.54 38.74 26.15 7.19
+Pixel AT 79.57 8573 | 9.55 59.92 31.00 67.95 44.63 29.83 10.23

+PyramidAT 79.69 8582 | 996 59.15 31.57 68.12 46.50 31.74 10.94

ResNet-200 79.47 8525 | 8.65 6558 31.86 67.36 40.55 28.21 7.81
+Pixel AT 80.51 86.34 | 1293 56.99 33.84 69.73 46.32 32.74 9.14
+PyramidAT 80.92 86.59 | 14.17 55.72 34.04 70.08 48.05 34.54 11.48

Table 1. For all variants of ResNet, PyramidAT leads to improvements. Note that this is with the standard training of ResNet.

2.2. ViT Tiny/16

ViT Ti/16 has the same overall structure and design as ViT B/16 (the primary model used in our main paper) but is
significantly smaller, at 5.8 million parameters (as opposed to the 86 million parameters of B/16). More specifically, Ti/16
has a width of 192 (instead of 768), MLP size of 768 (instead of 3072), and 3 heads (instead of 12). In total, this decrease
in parameters and model size leads to a substantial decrease in capacity. We experiment with ViT Ti/16 primarily in order to
understand the impact of this decreased capacity on our adversarial training methods.

We start with an exploration of the impact of the random augmentation’s strength on the overall performance of the model.
Table 2 shows the performance of Ti/16 models with different RandAugment parameters (the two parameters are in order
the number of transforms applied and the magnitude of the transforms); this table suggests that the network’s lower capacity
benefits from weaker random augmentation. Specifically, the best RandAugment parameters for the majority of the evaluation
datasets is (1,0.8), which is considerably lower than the RandAugment parameters tuned for B/16 (2, 15).

Out of Distribution Robustness Test

Method ImageNet  Real A Cl ObjectNet V2 ‘ Rendition  Sketch  Stylized
RA=(2,10) 61.07 68.77 | 3.95 85.84 12.88 48.50 21.95 11.21 4.84
RA=(2,5) 64.62 72.57 | 459 80.79 15.44 52.37 25.68 14.48 8.36
RA=(1,10) 63.64 71.26 | 4.64 83.04 14.53 51.37 23.67 13.14 7.27
RA=(1,5) 64.96 72.54 | 4.80 81.32 14.94 52.05 25.03 13.69 8.98
RA=(1,3) 64.88 72.66 | 480 79.04 15.61 52.59 25.43 13.54 8.13
RA=(1,0.8) 65.33 7319 | 479 77.08 16.16 53.03 25.98 14.15 8.98
RA=(1,0.4) 64.27 72.17 | 469 78.10 15.46 52.18 24.99 13.47 8.59
RA=(1,0.1) 63.58 7141 | 480 79.23 15.39 5143 23.66 12.54 8.36

Table 2. ViT Ti/16 baseline training with different random augmentations. In this table, RA denotes the two RandAugment parameters:
number of applied transforms, and mangitude of transforms. Note that weaker augmentation tends to perform better.

In Table 3 and 4, we pick several of the better performing RandAugment parameters and then show results from adversarial
training with steps of 1 and 3, respectively.

Table 3 shows that the performance of adversarial training depends heavily on both the random augmentation and the
type of attack. Note, RAm refers to the RandAugment mangitude parameter. As shown by RAm=0.1, pixel attacks can
improve performance for in-distribution evaluation datasets when the random augmentation strength is low. However, at
higher random augmentation, RAm=0.4 and RAm=0.8, PixelAT leads to the commonly observed trade-off between clean
performance and adversarial robustness. In contrast, pyramid tends to improve performance across the board regardless of
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the starting augmentation (for all RAm of 0.1, 0.4, and 0.8). Interestingly, PixelAT exhibits better robustness properties
(out-of-distribution performance) than PyramidAT for Ti/16. We hypothesize that the limited capacity can be “spent” on
either in-distribution or out-of-distribution representations and that pyramid tends to bias the network towards in-distribution
as opposed to pixel which has a bias towards out-of-distribution.

Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 Rendition  Sketch  Stylized
Ti/16 RAm=0.1 63.58 71.41 | 4.80 79.23 15.39 51.43 23.66 12.54 8.36
+Pixel AT steps=1 64.66 7275 | 439 7454 14.61 52.05 32.52 17.65 14.77
+PyramidAT steps=1 65.49 73.53 | 516 74.30 16.15 53.08 29.18 16.55 12.58
Ti/16 RAm=0.4 64.27 72.17 | 469 78.10 15.46 52.18 24.99 13.47 8.59
+Pixel AT steps=1 62.78 70.53 | 4.05 77.67 13.89 50.37 29.75 16.35 11.80
+PyramidAT steps=1 65.61 73.68 | 480 74.72 15.97 52.88 28.89 16.14 11.95
Ti/16 RAm=0.8 65.33 73.19 | 479 77.08 16.16 53.03 25.98 14.15 8.98
+Pixel AT steps=1 63.49 71.64 | 3.80 75.68 13.79 51.13 31.80 17.65 13.91
+PyramidAT steps=1 65.67 73.73 | 484 75.25 15.71 5343 29.08 16.41 12.97

Table 3. ViT Ti/16 adversarial training experiments with steps=1. RAm gives the RandAugment magnitude parameter; all experiments
have RandAugment number of transforms equal to 1. Pixel’s performance on 0.4 and 0.8 is consistent with earlier work that suggests
that adversarial training causes a trade-off between in distribution and out of distribution datasets. However, we show that a low random
augmentation starting point can break this trade-off and lead to gains. Pyramid tends to outperform pixel on in-distribution performance
for all random augmentations. However, pixel performs well for out-of-distribution datasets.

Table 4 shows that the strength of the adversarial attack also matters substantially to the overall performance of the
model. Both attacks, pixel and pyramid, with 3 steps tend to degrade the model’s performance on in-distribution evaluation
datasets. Adversarial training still provides some benefits for out-of-distribution, with pyramid performing the best in terms
of robustness. We hypothesize that pyramid outperforms pixel in the steps=3 runs because pyramid is a weaker out-of-
distribution augmentation and pixel at 3 steps has over-regularized the network, leading to decreased performance. Note
that pyramid at steps=3 produces the best out-of-distribution performance out of any Ti/16 runs including strong random
augmentation and PixelAT at steps=1.

Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 ‘ Rendition  Sketch  Stylized
Ti/16 RAm=0.1 63.58 71.41 | 480 79.23 15.39 5143 23.66 12.54 8.36
+Pixel AT steps=3 59.91 67.77 | 339 8144 12.04 47.28 28.52 14.78 11.02
+PyramidAT steps=3 62.71 71.08 | 4.08 7449 14.72 50.25 35.05 20.67 18.67
Ti/16 RAm=0.8 65.33 73.19 | 479 77.08 16.16 53.03 25.98 14.15 8.98
+Pixel AT steps=3 60.10 67.88 | 3.36  80.48 11.90 47.78 29.83 15.21 13.44
+PyramidAT steps=3 62.92 71.11 | 405 74.70 14.76 50.77 34.74 20.35 18.13

Table 4. ViT Ti/16 adversarial training experiments with steps=3. RAm gives the RandAugment magnitude parameter; all experiments
have RandAugment number of transforms equal to 1. All techniques degrade from the baseline suggesting that 3 adversarial steps produces
augmentation that is too strong for Ti’s capacity.

2.3. MLP-Mixer

As shown in the main paper, we observe gains across the board for MLP-Mixer with PyramidAT. Here, we show that the
gain is robust to a change in the LR schedule and that the gain is, again, affected by the starting augmentation.

Table 5 shows baseline and adversarially trained models for two different training schedules of MLP-Mixer, one with the
default LR schedule of 10k warm-up steps and then linear decay to an end learning rate (LR) of 1le — 5 and another with
a more aggressive end learning rate of 1e — 7. We show that this change in LR schedule does not affect the gains from
adversarial training.

Table 6 shows that, similar to ViT Ti/16, the gains are improved when the random augmentation is weakened. However,
in this case, the gain is not enough to overcome the drop in performance from using the weaker augmentation.
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Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 Rendition  Sketch  Stylized
MLP-Mixer [54] end LR=1e-5 (default) 78.27 83.64 | 10.84 58.50 25.90 64.97 38.51 29.00 10.08
+Pixel AT 77.17 8299 | 993  57.68 24.75 64.03 44.43 33.68 15.31
+Pyramid AT 79.29 84.78 | 12.97 52.88 28.60 66.56 45.34 34.79 14.77
MLP-Mixer [54] end LR=1e-7 75.92 81.28 | 945 64.29 22.13 62.17 33.70 25.15 7.27
+Pixel AT 74.96 80.81 | 7.81 61.85 20.87 60.94 39.82 28.59 12.27
+PyramidAT 77.98 83.60 | 11.17 56.19 25.59 64.92 41.65 31.99 12.66
Table 5. MLP-Mixer ablations with different training. The pyramid gains are preserved even with different training schedules.
Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 Rendition  Sketch  Stylized
MLP-Mixer [54] end LR=1e-7, RA=(2,15) 75.92 81.28 | 945 6429 22.13 62.17 33.70 25.15 7.27
+Pixel AT 74.96 80.81 | 7.81 61.85 20.87 60.94 39.82 28.59 12.27
+Pyramid AT 77.98 83.60 | 11.17 56.19 25.59 64.92 41.65 31.99 12.66
MLP-Mixer [54] end LR=1e-7, RA=(2,9) 73.56 79.01 | 779 67.18 18.09 60.30 31.47 22.80 7.58
+Pixel AT 72.44 7827 | 7.80  63.38 16.96 58.40 37.18 25.78 12.27
+Pyramid AT 76.19 8147 | 10.61 57.71 21.86 63.03 39.52 29.40 14.37

Table 6. MLP-Mixer ablations with random augmentation magnitude. Weaker random augmentations lead to larger gains from the adver-
sarial training but with these parameters do not lead to better overall performance than the strong random augmentation plus adversarial
training. Note that for both the starting point and weaker random augmentation, the gain from pyramid is substantial compared to the gain
from pixel.

3. Additional Ablations
3.1. Dropout

One of the key findings of this paper is the importance of “matched” Dropout [50] and stochastic depth [23]. Here we
describe numerous ablations on these Dropout terms and list several detailed findings including:

* Matching the Dropout and stochastic depth matters significantly for balanced clean performance and robustness.
* Running without Dropout in the adversarial training branch can improve robustness even more.

* Dropout matters more than Stochastic Depth

Note that in the tables below, we use the term “dropparams” to refer to a tuple of the Dropout probability and stochas-
tic depth probability. Clean dropparams (abbreviated as c_dp) refer to the dropparams used for the clean training branch;
adversarial dropparams (abbreviated as a_dp) refer to the dropparams used for the adversarial training branch; and matched
dropparams (abbreviated as m_dp) refer to dropparams used for both clean and adversarial branches. So c.dp = (10,0)
means that the clean training branch had a 10% probability of Dropout but a 0% probability of stochastic depth.

Table 7 explores different possible values for adversarial dropparams. In general, lower values of Dropout and stochastic
depth in the adversarial branch improve out-of-distribution performance while hurting in-distribution performance; however,
the opposite is not true: higher levels of Dropout and stochastic depth in the adversarial branch do not improve in-distribution
performance. In-distribution performance seems to peak when the params for the adversarial and clean branches match.

Table 8 explores different possible values for matched dropparams. In general, the dropparams determined by RegViT [51]
seem to be roughly optimal for both the baselines and the adversarially trained models, with some variation for some datasets.

Table 9 explores if one of these parameters is more important than the others. To do so, we set clean dropparams to
(10, 10) for the entire table (besides the included baselines) and only vary the adversarial dropparams. For both Pixel AT and
PyramidAT, the Dropout parameter seems to be more important for clean, in-distribution performance. Without Dropout,
the top-1 of ImageNet drops 0.41 for PixelAT and 0.92 for PyramidAT. However, no Dropout does give a substantial boost
to out-of-distribution performance, with Rendition gains of 11.59 for PixelAT and 15.68 for PyramidAT and Sketch gains
of 7.49 for PixelAT and 11.96 for PyramidAT. Without stochastic depth, the adversarially trained models seem to perform
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Out of Distribution Robustness Test

Method ImageNet  Real A Cl ObjectNet V2 Rendition  Sketch  Stylized
Baseline c_dp = (10, 10) 79.92 85.14 | 17.48 5246 29.30 67.49 38.24 29.08 11.02
PixelAT a_dp = (0, 0) 79.13 84.75 | 1437 5273 29.01 66.94 49.94 37.03 22.34
PixelAT a_dp = (5, 5) 78.41 84.39 | 14.00 54.50 28.04 66.30 49.29 36.84 21.80
PixelAT a_dp = (10, 10) 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
PixelAT a_dp = (20, 20) 81.00 86.16 | 21.43 46.07 30.85 69.60 46.00 34.73 18.36
PixelAT a_dp = (30, 30) 76.53 82.56 | 16.20  66.09 24.22 64.40 42.93 34.89 15.00
Baseline c_dp = (10, 10) 79.92 85.14 | 17.48 5246 29.30 67.49 38.24 29.08 11.02
PyramidAT a_dp = (0, 0) 79.31 85.13 | 13.95 55.09 29.98 67.43 53.69 41.07 23.44
PyramidAT a_dp = (5, 5) 79.13 84.90 | 13.43 54.08 28.99 67.50 52.39 40.23 24.84
PyramidAT a_dp = (10, 10) 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14
PyramidAT a_dp = (20, 20) 81.67 86.76 | 23.33 45.19 32.74 70.58 48.15 38.01 17.50
PyramidAT a_dp = (30, 30) 74.26 80.57 | 11.55 69.85 22.87 61.46 41.59 29.89 17.66

Table 7. Ablation on the values of Dropout and stochastic depth for adversarial training branch. All c_dp are kept constant at (10, 10) in
the adversarial section.

Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 Rendition  Sketch  Stylized

Baseline c_dp = (0, 0) 75.69 80.92 | 12.68 61.78 23.65 62.49 34.23 24.38 7.73
Baseline c_dp = (5, 5) 79.05 84.19 | 1652 54.32 28.27 66.40 37.38 28.08 9.53
Baseline c_dp = (10, 10) 79.92 85.14 | 17.48 5246 29.30 67.49 38.24 29.08 11.02
Baseline c_dp = (15, 15) 79.35 84.74 | 17.71  52.96 29.11 67.47 39.13 28.67 11.41
Baseline c_dp = (20, 20) 78.40 84.24 | 16.16 54.93 27.80 66.07 37.85 27.717 9.84
Pixel AT m_dp = (0, 0) 79.13 84.20 | 19.71 49.68 29.77 67.02 43.34 32.14 15.23
PixelAT m_dp = (5, 5) 80.82 85.59 | 22.12 46.15 31.27 68.99 44.86 33.31 16.95
PixelAT m_dp = (10, 10) 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
Pixel AT m_dp = (15, 15) 79.03 84.88 | 15.16 50.67 27.72 66.53 46.43 34.21 21.95
PixelAT m_dp = (20, 20) 77.89 84.12 | 13.99 52.20 26.28 66.06 45.21 32.75 21.95
PyramidAT m_dp = (0, 0) 79.54 84.66 | 1891 50.02 30.10 67.44 44.43 33.46 13.67
PyramidAT m_dp = (5, 5) 81.80 86.59 | 23.47 4552 32.76 70.36 46.62 36.50 17.27
PyramidAT m_dp = (10, 10) 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14
PyramidAT m_dp = (15, 15) 80.95 86.49 | 21.33 46.18 31.62 69.70 47.21 36.83 18.91
PyramidAT m_dp = (20, 20) 79.56 85.77 | 1835 49.14 29.73 68.13 45.72 3541 18.36

Table 8. Ablation on the values of Dropout and stochatic depth for matched attacks.

roughly as well as with stochastic depth, exhibitly marginally more clean accuracy for PyramidAT than the model with both
Dropout and stochastic depth. Our main takeaway is that Dropout seems to be the primary determinant in whether the gains
are balanced between in-distribution and out-of-distribution or primarily focused on out-of-distribution. In fact, no Dropout
PyramidAT performs so well on out-of-distribution that it sets new state-of-the-art numbers for Rendition and Sketch.

Table 10 explores parameter settings where the Dropout and stochastic depth are not equal. In general, there does not
seem to be a consistent trend or recognizable pattern for the overall performance, though some patterns exist for specific
attacks and evaluation datasets. For example, increasing stochastic depth probability for pixel attacks tend to improve Real,
ImageNet-C, and ObjectNet performance.

Table 11 explores the effects of adversarial training with different dropparams without Dropout or stochastic depth in the
main branch. In general, the lack of Dropout and stochastic depth in the clean branch has a substantial negative effect on the
performance of the model and all of the resulting models under-perform their counterparts with non-zero clean dropparams.
In this setting, adversarial training does provide substantial improvements for both in-distribution (+5.18 for clean using
PyramidAT) and out-of-distribution performances (4+12.29 for Rendition using PyramidAT and +11.68 for Sketch using
PyramidAT), but not enough to offset the poor starting performance of the baseline model.
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Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 ‘ Rendition  Sketch  Stylized
Baseline c_dp = (0, 0) 75.69 80.92 | 12.68 61.78 23.65 62.49 34.23 24.38 7.73
Baseline c_dp = (10, 10) 79.92 85.14 | 1748 52.46 29.30 67.49 38.24 29.08 11.02
PixelAT a_dp = (0, 10) 79.40 8498 | 1432 52.17 28.87 67.24 49.83 36.57 21.88
PixelAT a_dp = (10, 0) 79.51 85.12 | 15.65 49.38 29.45 67.50 47.32 34.64 21.17
PixelAT a_dp = (10, 10) 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
PyramidAT a_dp = (0, 10) 79.00 85.02 | 13.69 5558 29.38 66.96 53.92 41.04 24.22
PyramidAT a_dp = (10, 0) 81.80 86.67 | 23.51 45.00 33.37 70.52 47.82 37.09 19.38
PyramidAT a_dp = (10, 10) 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14

Table 9. Ablation on the values of Dropout and stochastic depth for unmatched attacks. For the adversarial techniques, clean dropparams
will be the same as RegVit at (10, 10). For the adversarial training rows, either Dropout or stochastic depth will be 0 and the other will be
the base value. This table explores whether one of these parameters is more important than the other. For both Pixel AT and PyramidAT,
Dropout appears to be more important in determining the balance between in-distribution and out-of-distribution performance. Pyramid AT
no Dropout is SOTA for Rendition and Sketch.

Out of Distribution Robustness Test

Method ImageNet  Real A Cl ObjectNet \' ‘ Rendition  Sketch  Stylized
Baseline c_dp = (10, 10) ‘ 79.92 85.14 | 1748 52.46 29.30 67.49 ‘ 38.24 29.08 11.02
PixelAT a_dp = (0, 10) 79.40 8498 | 1432 52.17 28.87 67.24 49.83 36.57 21.88
PixelAT a_dp = (10, 10) 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
PixelAT a_dp = (20, 10) 74.58 80.74 | 13.07 69.14 23.93 61.82 42.64 33.54 17.42
PixelAT a_dp = (30, 10) 80.14 85.59 | 2091 48.99 29.74 68.50 44.62 35.06 16.02
PixelAT a_dp = (10, 0) 79.51 85.12 | 15.65 49.38 29.45 67.50 47.32 34.64 21.17
PixelAT a_dp = (10, 10) 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
PixelAT a_dp = (10, 20) 81.14 86.22 | 21.37 45091 31.53 69.75 46.24 35.14 19.45
PixelAT a_dp = (10, 30) 80.94 86.26 | 21.37 45.19 31.63 69.69 45.76 34.69 19.61

PyramidAT a_dp = (0, 10) 79.00 85.02 | 13.69 5558 29.38 66.96 53.92 41.04 24.22
PyramidAT a_dp = (10, 10) 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14
PyramidAT a_dp = (20, 10) 75.36 81.40 | 14.03 70.76 23.65 63.14 39.36 26.92 15.00
PyramidAT a_dp = (30, 10) 79.18 8491 | 1743 56.44 28.95 67.81 43.64 29.91 19.45
PyramidAT a_dp = (10, 0) 81.80 86.67 | 23.51 45.00 33.37 70.52 47.82 37.09 19.38
PyramidAT a_dp = (10, 10) 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14
PyramidAT a_dp = (10, 20) 81.50 86.58 | 23.13 4572 32.45 70.48 48.08 36.91 17.66
PyramidAT a_dp = (10, 30) 81.53 86.75 | 21.87 45.59 32.80 70.34 47.73 37.12 17.89

Table 10. Ablation on settings where the Dropout parameter and stochastic depth parameter are not equal for adversarial training branch.
All c_dp are kept constant at (10, 10) in the adversarial section.

3.2. Pyramid Structure

In the main paper, Table 8 presented an abridged version (with only a subset of the evaluation datasets) of an ablation
on the structure of the pyramid used in the pyramid adversarial training. We present the full version (complete with all the
evaluation datasets) of this ablation in Table 12. This table remains consistent with the description and explanation in the
main table: adding more layers to the pyramid tends to improve performance. In fact, Table 12 shows the full extent of the
trade-off between the 3rd and 4th levels of the pyramid. Specifically, the 4th level seems to lead to a slight improvement in
out-of-distribution performance and a slight decline in in-distribution performance. Note that 2-level Pyramid is simply the
combination of Pixel and Patch.

Using the the scale notation established in 3.2 Pyramid Adversarial Training, the details of these layers are as follows in
Table 13.

In Table 14, we explore different magnitudes for the patch level. We note that some of the gains from 2-level are from the
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Out of Distribution Robustness Test

Method ImageNet  Real A Cl ObjectNet V2 ‘ Rendition  Sketch  Stylized
Baseline c_dp = (0, 0) 75.69 80.92 | 12.68 61.78 23.65 62.49 34.23 24.38 7.73
PixelAT c.dp = (0,0) a_dp = (5, 5) 79.86 84.78 | 21.23  48.66 30.19 67.92 43.94 32.69 15.00
PixelAT c_dp = (0, 0) a_dp = (10, 10) 79.82 84.81 | 21.32 47.82 30.84 67.99 43.25 3224 14.92
PixelAT c_dp = (0,0) a_dp = (20, 20) 80.03 84.96 | 21.69 47.86 31.34 68.16 43.56 32.78 14.77
Baseline c_dp = (0, 0) 75.69 80.92 | 12.68 61.78 23.65 62.49 34.23 24.38 7.73
PyramidAT c_dp = (0,0) a_dp = (5, 5) 80.79 85.66 | 23.65 47.39 32.39 69.12 46.30 36.40 15.70
PyramidAT c_dp = (0,0) a_.dp = (10, 10) 80.69 8555 | 2325 47.14 32.74 69.21 46.49 36.09 15.78
PyramidAT c_dp = (0,0) a_dp = (15, 15) 80.87 85.74 | 23.63 46.68 32.67 69.27 46.52 36.06 17.19

Table 11. Ablation on the values of Dropout and stochastic depth for adversarial training branch for a clean branch with no Dropout or
stochastic depth; specifically, all c_dp are kept constant at (0, 0). The loss of Dropout and stochastic depth causes poor performance across

the board.
Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 ‘ Rendition  Sketch  Stylized
Pixel 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
Patch 81.20 86.10 | 21.33  50.30 31.87 68.98 42.87 33.75 15.00
2-level Pyramid 81.65 86.69 | 22.79 45.27 32.46 69.86 47.00 36.71 19.06
3-level Pyramid 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14
4-level Pyramid 81.66 86.68 | 23.21 45.29 32.85 70.56 47.68 37.41 20.47

Table 12. Pyramid structure ablations. This shows the effect of the number of layers of the pyramid. Adding coarser layers with larger

magnitudes generally improves performance.

higher magnitude for the coarse level.

Layer Name S M
Layer 1 | Pixel 1 1

Layer 2 | Patch 16 10
Layer3 | 2 x 2 patches 32 20
Layer 4 | Global 224 25

Table 13. Pyramid details.

Out of Distribution Robustness Test
Method ImageNet Real A Cl ObjectNet V2 Rendition  Sketch  Stylized
Pixel m =1 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
Patchm =1 80.09 85.09 | 1840 52.17 29.78 68.09 40.46 30.46 13.83
Patchm = 10 80.95 85.77 | 20.01 50.62 31.37 68.86 42.46 32.65 11.64
Patch m = 20 81.20 86.10 | 21.33  50.30 31.87 68.98 42.87 33.75 15.00
2-level Pyramid m = [10, 1] 81.65 86.69 | 22.79 45.27 32.46 69.86 47.00 36.71 19.06

Table 14. Pyramid structure ablations where m is the multiplicative term of the perturbation. Shows that the combination of patch and
pixel is better than only patch, even when patch is tested at different magnitudes.

We additionally include Table 15 which shows a random subset of pyramid structures tested. The best pyramids tend to
be structured based on the patches of the ViT.

3.3. More epochs for baseline

We tested the effect of additional epochs for the baseline training. We found that going from 300 epochs to 500 (with the
learning rate being adjusted accordingly) did not provide any benefits to the network’s performance. In fact, Table 16 shows

1

8



Scale factor Strengths ‘ImageNet[ ] Real[12] A[22] C[20]4 Rendition[I9] Sketch[16] Stylized [

]

(224,16, 1] 20,10, 1] 81.37 86.50  21.65  45.84 46.72 36.33 17.97
32,16, 1] 20,10, 1] 81.71 86.82 2299  44.99 47.66 36.77 19.14
[224,32,16,1]  [20, 10,5, 1] 81.49 86.66 2193  45.89 47.08 37.22 18.98
[16,1] [10,1] 81.65 86.69 2279 4527 47.00 36.71 19.06
16,4, 1] 20,10, 1] 81.43 8659  21.83  49.15 47.49 37.85 17.19

Table 15. Random set of pyramid configurations.

that the longer run performs worse in most evaluation datasets than the shorter run.

Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 ‘Rendition Sketch  Stylized

79.92 85.14 | 1748 52.46 29.30 67.49 38.24 29.08 11.02
79.34 78.83 | 18.39 54.28 28.43 66.69 37.64 27.60 10.31

Baseline 300 epoch.
Baseline 500 epoch.

Table 16. Exploration of the number of steps for the baseline.

3.4. Number of Attack Steps

We perform an ablation on the number of steps in the adversarial attack. AdvProp [01] uses 5 for their main paper; we also
adopt this parameter as a reasonable balance between performance and train time (each additional step in the attack requires
a forward and backward pass of the model and increases the train time accordingly). Table 17 shows that higher number of
steps tends to lead to better performance for both pixel and pyramid.

Out of Distribution Robustness Test

Method ImageNet  Real A Cl ObjectNet V2 Rendition  Sketch  Stylized
PixelAT steps=1 80.46 85.48 | 17.96 49.59 30.12 68.66 43.31 32.12 13.59
Pixel AT steps=3 80.39 85.62 | 17.71 48.50 29.67 68.58 46.56 33.84 17.50
PixelAT steps=5 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
Pixel AT steps=7 80.77 86.03 | 20.44 46.31 31.12 69.25 45.95 34.54 18.59

PyramidAT steps=1 79.93 84.89 | 18.17 50.92 28.91 68.13 40.50 30.48 12.81
PyramidAT steps=3 81.47 86.46 | 22.39 46.21 32.33 70.11 45.07 34.89 18.20
PyramidAT steps=5 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14
PyramidAT steps=7 81.65 86.69 | 23.63 4533 32.53 70.47 47.29 36.52 16.95

Table 17. Ablation on the number of steps in the adversarial attack. For both Pixel AT and Pyramid AT, larger number of steps tend to give
higher performance. Note that increasing the number of steps also increases the train time. We chose 5 for both Pixel AT and Pyramid AT
as a reasonable tradeoff between performance and train time.

3.5. Magnitude

We also perform ablations on the magnitude of perturbations (specifically L2 of the difference between adversarial im-
age and the original image) and show that there exists an inverted U curve for both PixelAT and PyramidAT where one
perturbation setting tends to produce the best model for most evaluation datasets.

For Pixel AT, we change the perturbation magnitude by editing the learning rate (Ir) and the epsilon parameter (e) which is
used for the clipping function. Since we use the SGD optimizer, a larger learning rate and epsilon will naturally lead to larger
perturbations. Table 18 shows the results of these experiments, which suggests that pixel attacks can very quickly become
too large to help the overall network performance.

For PyramidAT, we adjust the perturbation size by editing the magnitude of the multiplicative terms. In Table 19, we
perform an exhaustive sweep of these terms starting with an initial list of [20, 10, 1] and multiplying the list by a constant.
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Out of Distribution Robustness Test
Method ImageNet Real A Cl ObjectNet V2 Rendition  Sketch  Stylized
Baseline 79.92 85.14 | 17.48 5246 29.30 67.49 38.24 29.08 11.02
PixelAT Ir = 5/255, € = 20/255 81.25 86.61 | 21.59 44.07 32.06 69.75 47.59 37.29 20.39
PixelAT Ir = 10/255, € = 40/255 80.93 86.35 | 21.43  45.58 32.88 69.57 45.40 35.01 18.44
Pixel AT Ir = 20/255, ¢ = 80/255 80.59 85.90 | 2031 46.11 30.83 69.05 45.08 33.39 18.28
Pixel AT Ir = 40/255, ¢ = 160/255 80.27 85.59 | 1895 48.61 30.34 68.40 42.12 32.97 15.16

Table 18. Ablation on the magnitude of PixelAT. PixelAT tends to degrade with higher Ir and e.

This table shows that there also exists an inverted U curve where the performance will degrade if the perturbation magnitude

is either too small or too big.

Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 ‘ Rendition  Sketch  Stylized
Baseline 79.92 85.14 | 17.48 52.46 29.30 67.49 38.24 29.08 11.02
PyramidAT m = [1, 0.5, 0.05] 80.94 85.71 | 19.29 49.97 30.57 68.98 43.38 32.99 13.52
PyramidAT m = [2,1,0.1] 80.94 85.71 | 19.29 49.97 30.57 68.98 43.38 32.99 13.52
PyramidAT m = [4,2,0.2] 80.94 85.71 | 19.29 49.97 30.57 68.98 43.38 32.99 13.52
PyramidAT m = [8,4, 0.4] 80.73 86.02 | 20.20 47.20 31.36 69.08 44.10 33.48 18.83
PyramidAT m = [10, 5, 0.5] 80.94 85.71 | 19.29 49.97 30.57 68.98 43.38 32.99 13.52
PyramidAT m = [12, 6, 0.6] 80.47 85.83 | 1932 47.48 30.86 68.97 44.10 33.46 17.03
PyramidAT m = [20, 10, 1] 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14
PyramidAT m = [22,11,1.1] 81.71 86.70 | 23.55 44.84 32.98 70.57 47.81 37.93 18.59
PyramidAT m = [24,12,1.2] 81.19 86.40 | 20.63 46.78 31.59 69.27 45.48 35.25 16.72
PyramidAT m = [28, 14, 1.4] 81.14 86.31 | 20.68 46.71 30.99 69.61 46.23 35.86 17.50

Table 19. Ablation on the magnitude of the pyramid adversarial training.

4. Additional Analysis
4.1. Positional embedding

In Table 20, we explore training on a ViT model without the positional embedding in order to understand the effects of
the Pixel AT and PyramidAT. We observe that without the positional embedding, Pixel AT and PyramidAT tend to perform
similarly; in fact, the gap between PixelAT and PyramidAT for clean ImageNet decreases from 1.29 with the positional
embedding to 0.17 without the positional embedding. This suggests that much of the improvements for in-distribution
performance come from improved training of the positional embedding. However, even without the positional embedding,
we observe improvements in the out-of-distribution datasets; e.g. going from pixel to pyramid results in a gain of 2.27 on
Rendition and 2.37 on Sketch with the positional embedding and slightly smaller gains of 1.27 and 1.43 without the positional
embedding. This suggests that PyramidAT is still improving the learned features used for out-of-distribution performance.

Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 ‘ Rendition  Sketch  Stylized
Baseline with positional embedding 79.92 85.14 | 17.48 5246 29.30 67.49 38.24 29.08 11.02
Pixel with positional embedding 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
Pyramid with positional embedding 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14
Baseline without positional embedding 76.58 82.04 | 1276  63.56 24.15 63.26 27.99 15.79 6.25
Pixel without positional embedding 78.30 83.85 | 14.52 56.86 26.19 65.50 33.09 19.93 9.92
Pyramid without positional embedding 78.47 84.28 | 1479 57.11 27.28 66.21 34.46 21.36 9.38

Table 20. Analysis of the effect of adversarial training on a ViT without positional embedding. We observe that without the positional
embedding, PixelAT and PyramidAT tend to perform similarly for many of the evaluation datasets.
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4.2. Optimizing each level individually

In the pyramid attack, the different multiplicative magnitudes for each level mean that each level’s parameter takes different
sized steps; for example, with the default settings, a change of 1 in the patch parameter leads to a change of 10 on the final
image, whereas a change of 1 in the pixel parameter leads to a change of 1. Here, we attempt to understand whether the
gradients for the different levels of the pyramid can be informative in the presence of each other; specifically, if the patch
level makes a step of 10 in one direction, will this invalidate the gradient in the pixel level which only makes a step of 1. To
do this, we experiment with running each level of the pyramid separately, going from coarse to fine: for a given k, we run k
steps of only the coarsest level, k steps of only the next coarsest level, etc. In this experiment, we try to keep the amount of
training time roughly equal and select & so that the sum of &k on each level is roughly equal to the steps taken in the pyramid
method in the main paper (5). Table 21 shows the results from this experiment and suggests that the gradients from each
individual level are still useful when combined and that separating this optimization does not in fact lead to performance
improvements; note that k = 2 leads to more overall optimization steps (6 total steps) than the main technique (5 total steps).

Out of Distribution Robustness Test
Method ImageNet  Real A Cl ObjectNet V2 ‘Rendition Sketch  Stylized

Pyramid Separate k = 1 (3 total) 81.17 86.06 | 19.41 49.10 30.35 69.27 42.94 33.41 15.55
Pyramid Separate k = 2 (6 total) 81.36 86.36 | 2231 47.73 32.12 69.92 46.13 35.66 15.31
Pyramid (5 steps total) 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14

Table 21. Ablation on CoarseThenFine. The separated gradients do not seem strictly better than simply running all levels at once.

4.3. Evaluation of white-box attacks

We evaluate the performance of the B/16 baseline, PixelAT, and PyramidAT models against pixel and pyramid PGD
attacks. The results are given in table 22. Both adversarially trained models give the best performance when attacked in the
setting in which they were trained. PyramidAT provides comparably more protection against pixel attacks (48.8% Top-1)
than Pixel AT against pyramid attacks (43.0% Top-1).

Method | Pixel PGD  Pyramid PGD
Baseline 13.7 26.1
+Pixel AT 53.6 43.0
+Pyramid AT 48.8 68.7

Table 22. Top-1 accuracy of 3 models (baseline, Pixel AT, PyramidAT) against 2 types of white-box adversarial attacks (Pixel PGD, Pyramid
PGD, both at 5 steps).

5. Additional Visualizations
5.1. Pixel attacks

In Figure 2, we include 4 additional visualizations of pixel attacks against the baseline and Pixel AT models. Some structure
is visible in the Pixel AT model. Note that for pixel attacks, we would expect more structure to appear in the Pixel AT model
than the Pyramid AT model since the attack is in-distribution for the Pixel AT model but out-of-distribution for the PyramidAT.

5.2. Pyramid attacks

In Figure 3, we include 4 additional visualizations of pyramid attacks against the PyramidAT models. Note that in the
finest level, more structure is visible.

5.3. Attention

We include the average attentions of baseline, PixelAT, and PyramidAT on the following datasets: ImageNet (Figure
4), ImageNet-A (Figure 5), ImageNet-Real. (Figure 6), ImageNet-Rendition (Figure 7), ObjectNet (Figure 8), and Stylized
ImageNet (Figure 9). The trend, as stated in the main paper, (PixelAT tightly focusing on the center and PyramidAT taking a
more global perspective) stays consistent across the various evaluation datasets.
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Original Baseline Pixel AT PyramidA

Figure 2. Visualizations of pixel attacks on different pre-trainings: baseline, PixelAT, and PyramidAT. Note that Pixel AT models should
have better defense against pixel attacks than PyramidAT models since the attack is in-distribution to the train data.

We also include 32 examples of the attention for individual images sampled from the following datasets: ImageNet
(Figure 10), ImageNet-A (Figure 11), ImageNet-Real. (Figure 12), ImageNet-Rendition (Figure 13), ObjectNet (Figure 14),
and StylizedImageNet (Figure 15). The trend, as stated in the main paper, remains consistent through most of the examples.
Baseline tends to be random and highlight both the object and background (particularly corners); Pixel AT tries to aggressively
crop to the object in the image, often cutting off parts of the object; and PyramidAT crops more closely than baseline but less
aggressively than PixelAT. PyramidAT tends to take a more global perspective on the image and attends to both the object
but also potentially relevant pieces of the background.
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Original Top layer Middle layer Pixel layer Perturbed Image

Figure 3. Visualizations of pyramid attacks on pyramid-trained model.
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Figure 4. Visualizations of the average attention for different pre-trainings. Examples on dataset ImageNet.
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Figure 5. Visualizations of the average attention for different pre-trainings. Examples on dataset ImageNet-A.
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Figure 6. Visualizations of the average attention for different pre-trainings. Examples on dataset ImageNet2012-Real.
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Figure 7. Visualizations of the average attention for different pre-trainings. Examples on dataset ImageNet-Rendition.
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Figure 8. Visualizations of the average attention for different pre-trainings. Examples on dataset ObjectNet.
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Figure 9. Visualizations of the average attention for different pre-trainings
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Baseline Pixel AT PyramidAT Original Baseline Pixel AT

Figure 10. Visualizations of the attention for different pre-trainings. Examples on dataset ImageNet.
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Original Baseline Pixel AT PyramidAT Original Baseline Pixel AT PyramidAT

Figure 11. Visualizations of the attention for different pre-trainings. Examples on dataset ImageNet-A.
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Figure 12. Visualizations of the attention for different pre-trainings. Examples on dataset ImageNet2012-ReaL.
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Figure 13. Visualizations of the attention for different pre-trainings. Examples on dataset ImageNet-Rendition.
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Figure 14. Visualizations of the attention for different pre-trainings. Examples on dataset ObjectNet.
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Figure 15. Visualizations of the attention for different pre-trainings. Examples on dataset StylizedImageNet.
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6. Optimizers

We observe different behavior from adversarial training depending on the optimizer used in generating the attacks; note,
discussion of optimizers was omitted from the main paper due to concerns regarding space and complexity. Throughout the
main paper, we use SGD, the standard optimizer in the adversarial attack and training community. However after testing
multiple optimizers (Adam [26], AdaBelief [660]), we observe significantly different behavior from AdaBelief. Specifically,
as shown in Table 23, AdaBelief provides a significant improvement to PixelAT (0.71 to ImageNet, 1.72 in ImageNet-R) and
a marginal improvement to PyramidAT (0.08 to ImageNet, 0.98 in ImageNet-R).

Out of Distribution Robustness Test

Method ImageNet  Real A Cl ObjectNet V2 ‘ Rendition  Sketch  Stylized
Pixel AT SGD 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
Pixel AT AdaBelief 81.13 86.40 | 2145 45.25 32.03 69.97 47.11 36.18 20.55

PyramidAT SGD 81.71 86.82 | 22.99 44.99 32.92 70.82 47.66 36.77 19.14
PyramidAT AdaBelief 81.79 86.79 | 23.24 44.79 32.81 70.87 48.64 38.38 20.78

Table 23. SGD vs AdaBelief

As shown in Figure 16, we also observe significant visual difference in the pixel attacks on the pixel-trained model with
AdaBelief.

Shown in Figure 17, this visual difference is more apparent when looking at pixel attacks using AdaBelief on these four
different pre-trainings. In the pixel attacks using AdaBelief on AdaBelief pixel-trained model, contours and edges are clearly
visible and the edits to the texture are smoother and more consistent. Even beyond classification, this may provide a way to
do semi-supervised segmentation (with only the class label). Currently, AdaBelief does not provide such visible changes or
improvements to pyramid. We leave this adaptation to future work.

32



Original Baseline Pixel Pyramid Pixel AdaBelief

Figure 16. Visualizations of pixel attacks using SGD on different pre-trainings: baseline, pixel, pyramid, and pixel Adabelief.
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A

Figure 17. Visualizations of pixel attacks using AdaBelief on different pre-trainings: baseline, Pixel AT SGD, PyramidAT SGD, and
Pixel AT Adabelief.
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