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A. Connectivity Graph

We detail the construction of connectivity graphs in
Habitat-Matterport3D environments, as well as the adjust-
ments on the R2R-CE trajectories.

A.1. Graph Construction (§4.21)

Projection We start with the pre-defined connectivity
graphs in MP3D environments, and leverage trajectories in
datasets to adjust the position of nodes. For each MP3D
scene, the corresponding graph that contains a set of nodes
is projected to the same scene in Habitat. Note that, each
node that is applied by VLN-CE [12], for creating the con-
tinuous ground-truth paths, is projected to the averaged po-
sition of points on the ground-truth paths that are closest to
this node. However, such projection only fixes a small por-
tion of invalid nodes (i.e. nodes within obstacles) and edges
(i.e. edges intersects with obstacles). To obtain a fully nav-
igable graph, we design a heuristic to further adjust the po-
sition of inaccessible nodes in the environment.

Criteria Four criteria are followed to ensure the quality
of the resulting graphs: (1) Nodes should not adhere to ob-
stacles. (2) As few as number of nodes should be added
for correcting invalid edges. (3) Straightness of the edges
should be maintained. (4) Nodes connected with an edge
shorter than 0.25 meters should be merged.

Sampling For each node that requires an adjustment,
we sample 264 points within a 0.35m-radius circle
centered at the node as its candidate new positions.
Those candidates are uniformly sampled on several
rings evenly at (0.1,18), (0.15,30), (0.2,36),
(0.25,48), (0.3,60) and (0.35,72), where

1Link to Section 4.2 in Main Paper.
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Figure 1. Graph construction methods. (a) The invalid node 2 is
adjusted to a newly sampled position in a 0.35m circle. (b) Node
2 and node 5 are merged to a new node 7, the edges are adjusted
accordingly. (c) An invalid edge between nodes 1 and 2 is replaced
by a detour and two new nodes (3 and 4) are added to the graph.
(d) New nodes (6) are added to the graph if there is no adjacent
node to the starting or ending position of a trajectory

(radius,#samples). According to the aforemen-
tioned Criteria, for all candidate positions that are not
within an obstacle, we score them by a weighted sum of
three measurements: (1) distance to closest obstacles, (2)
number of new nodes that needs to be added, and (3) edge
straightness which is computed as the ratio between the sum
of lengths of new edges and the original edge length. The
candidate position which has the highest score will become
the new position of the node.

Adding Nodes Detours are sometimes necessary for ad-
dressing the invalid edges that go through obstacles, in this
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case, new nodes are added to the graph. In specific, we
apply the shortest_path_follower in the Habitat
Simulator [15] to generate numbers of paths with various
step lengths that connect the two nodes. Nodes within these
paths are evaluated using the Criteria so that the best set of
new nodes can be determined and added to the graph.

Merging Once a fully navigable graph is created, nodes
within 0.5m are merged to a single node to make the graph
more concise. However, this may creates new invalid nodes
and edges. As a result, we repeat the Adjustment, Adding
Nodes and Merging processes until the entire connectivity
graph is fully navigable with edges longer than or equals to
0.5 meters.

Fitting Finally, to match the R2R-CE data [2, 12], we fit
the graph for the starting and ending positions of all trajec-
tories in the dataset (except for the test split). We check if all
the starting and ending points can be matched to nodes on
graphs within a geodesic distance of 0.8 meters, if not, new
nodes will be added to connect the graph to those positions
(using our Adding Nodes method).

Visualization Visualizations of the resulting Habitat-
MP3D graphs and the comparison to the original MP3D
graphs can be found in Figure 2 and Figure 3.

A.2. R2R-CE Trajectories Adjustment (§5.1)

To establish a fair comparison between discrete and con-
tinuous navigation in Habitat (§5.1), we re-compute and fil-
ter the original R2R-CE trajectories based on our Habitat-
MP3D graph. Specifically, for each continuous trajectory in
R2R-CE [12], we collect the three closest nodes to its start-
ing and the ending points, respectively. Then, for each one
of the nine pairs of starting and ending nodes, we collect up
to 200 shortest discrete paths on graph from all the possible
paths that connect the two nodes. For the resulting 1,800
paths, we measure the nDTW [11] between each path and
the original continuous trajectory, and select the path with
the highest score as the discrete ground-truth path on the
Habitat-MP3D graph. Samples which have a discrete trajec-
tory with nDTW lower than 0.92 will be discarded from the
dataset. Such expensive and strict filtering process ensures
that only samples with well-matched discrete and continu-
ous paths remain in the dataset, which is suitable for us to
compare navigation with high-level and low-level actions.

Overall, we obtain 10,755, 1,755 and 745 episodes on the
train, validation seen, and validation unseen split, respec-
tively. For reference, the original R2R-CE [12] has 10,819,
1,839 and 778 episodes in the data splits. Besides, the av-
eraged number of nodes on a trajectory is 6.00 and 6.63 for
samples in R2R [2] and in our filtered dataset, respectively.

A.3. Agent Performance (§5.2)

As shown in Table 1, we experiment with the same
agents on MP3D graphs and on our Habitat-MP3D graphs.
Surprisingly, despite the fact that agents receive lower-
quality images and navigate on a more complicated graph
in Habitat, similar performance are achieved in unseen en-
vironments.

Model Val MP3D R2R Habitat-MP3D R2R
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

CMA S 15.20 4.29 54.95 49.67 10.21 6.28 41.48 36.58
U 19.68 5.54 39.97 33.36 10.47 6.51 39.32 33.89

VLNœ BERT S 16.62 4.00 54.65 46.58 14.21 4.63 52.21 42.53
U 16.75 4.59 51.13 42.92 14.34 5.22 48.89 40.36

Table 1. Performance of agents navigating on MP3D and Habitat-
MP3D graphs in Seen (S) and Unseen (U) environments.

B. Navigator Networks
In this section, we provide the implementation details

of the Cross-Modal Matching agent (CMA) [18] and the
Recurrent VLN-BERT Agent (VLNœ BERT) [10] on the
R2R-CE [2] and the RxR-CE [13] datasets.

B.1. Architecture (§5.1)

Visual Encoders Agents in our experiments apply the
same RGB and depth encoders to process the candidate im-
ages at waypoint directions. As in VLN-CE [12], we use
two ResNet-50 [8], one pre-trained on ImageNet [14] for
classification and another one pre-trained on Gibson [20]
for point-goal navigation [19], to encode the RGB and depth
inputs, respectively. These encoders are freezed while train-
ing the navigators, where the outputs are fed into the can-
didate waypoints predictor to infer adjacent waypoints, and
into the navigators for view selection.

Refer to the Main Paper §3, we denote the encoded rep-
resentations as tvrgb

1 ,vrgb
2 , . . . ,vrgb

k | vrgb
i P R2048u and

tvd
1,v

d
2, . . . ,v

d
k | v

d
i P R128u2, corresponding to the k di-

rections with waypoints. The RGB and depth representa-
tions are merged before passing to the policy networks as

fi “
”

vrgb
i Wrgb;v

d
iWdepth;di

ı

Wmerge (1)

where W are learnable linear projections with ReLU acti-
vation. Following previous works [6, 16], we explicitly en-
code the relative direction of each candidate view as di. di

is a vector formed by replicating pcosθit, sinθitq by 32 times,
where θit is the heading angle of the view with respect to
the agent’s orientation. Note that, unlike previous works,
di in our experiments does not involve an elevation angle
because the waypoints predictor only creates a 2D-planar
graph. We suggest that predicting 3D waypoints could be a

2Subscript t for time step is omitted here for simplicity.



valuable extension for future work. Finally, the overall vi-
sual feature f i is of dimension 512 and 768 for the CMA
and the VLNœ BERT (to match the default hidden dimen-
sion of V&L BERT [7, 10]) models, respectively.

Language Encoders and Initial States Given a nat-
ural language instruction U of a sequence of l words
xw1, w2, . . . , wly, the agents first encode the instruction into
textual representations. For CMA, a bidirectional LSTM [9]
is applied to encode U with randomly initialized word em-
beddings as

X “ xx1,x2, . . . ,xly “ Bi-LSTM pw1, w2, . . . , wlq (2)

For VLNœ BERT, the language stream of the two-stream
V&L transformers [7] is applied to process U as

s0,X “ VLNœ BERTp[CLS],U ,[SEP]q (3)

with word embeddings pre-trained in PREVALENT [7].
[CLS] and [SEP] are the classification token
and the separation token pre-defined in BERT [5].
VLNœ BERT adopts the output of the [CLS] token s0
as the agent’s initial state, whereas CMA uses a vector of
zeros to represent the initial state.

CMA We apply the original CMA [18] as the policy net-
work in our experiments, which is different from the CMA
implemented in VLN-CE [12] that has an additional recur-
rent module. In specific, at each navigation step, the agent’s
state is encoded as:

st “ GRU
´”

cvis,0t ;at´1W act

ı

, st´1

¯

(4)

where at´1 is the agent’s past decision represented by
the aforementioned directional encoding and Wact is a
learnable projection with a hyperbolic tangent activation.
cvis,0t “ SoftATTNpf t, st´1q is the weighted sum of the
candidate features f t, where the weights are produced by a
dot-product based soft-attention [17] using the agent’s past
state st´1 as query. Then, the current state st is applied to
compute the updated textual and visual features as clangt “

SoftATTNpX, stq and cvis,1t “ SoftATTNpf t, stq. Finally,
the probability of each candidate directions is computed as

pt,i “ Softmax
´”

st; c
vis,1
t ; clangt

ı

Wa

`

f t,iWb

˘T
¯

(5)

In inference, the agent will select the view with the greatest
probability and navigate to the waypoint in that view.

VLNœ BERT We apply the PREVALENT variant [7]
of the VLNœ BERT [10] with slight modifications in our
experiments. Specifically, we remove the cross-modal

matching in state refinement since the method compli-
cates the network while leading to a trivial improvement.
VLNœ BERT applies a multi-layer transformers to perform
cross-modal soft-attention across the agent state, encoded
language and visual features:

st,pt “ VLNœ BERTpsdt´1,X,f tq (6)

where sdt´1 “ rst´1;at´1sW act is the previous state with
directional encoding, pt is the action probabilities com-
puted as the mean attention weights of the visual tokens f t

over all the attention heads in the last transformer layer with
respect to the state.

B.2. Training (§5.1)

All agents in our experiments are trained using imi-
tation learning (IL) with a cross-entropy loss on the ac-
tion probabilities pt and the oracle action a˚

t as LIL “

´
ř

t a
˚
t log pptq where the oracle action is to the way-

point which has the shortest geodesic distance to the target,
among all predicted waypoints. The oracle stop is positive
when the geodesic distance between the agent and the tar-
get is shorter than 1.5 meters. Note that, in some rare cases
(Figure 5), the candidate waypoints predictor might not be
able to return a waypoint that brings the agent closer to the
target3. In order to allow the agent to explore the environ-
ment while learning from teacher actions, we control the
agent with schedule sampling [3] to sample an action be-
tween oracle and prediction at each step.

Oracle Actions in RxR-CE Each path in RxR-CE [13] is
composed of multiple shortest sub-paths traversing through
a sequence of rooms, which is not necessarily the short-
est path to the target. As a result, we design a different
method to determine the oracle actions: At each time step,
we compute a sub-goal as the intersection of a 3-meter ring
centered at the agent and the ground-truth path. Then, the
oracle action is to the waypoint which has the shortest sum
of geodesic distances from the agent to the waypoint and
from the waypoint to the sub-goal. If there is more than
one intersection, we use the one that is the farthest on the
ground-truth path as the sub-goal. If there is no intersection,
we apply the latest sub-goal as the current sub-goal to push
the agent to return to the ground-truth path.

Initialization The VLNœ BERT is initialized from the
pre-trained PREVALENT model [7]. When training on
RxR-CE [13], we apply the multilingual BERT features
to initialize the word embeddings in both the CMA and
VLNœ BERT. We train each model three times each for a

3We experiment with taking the oracle action at each step for samples
in unseen environments in the original VLN-CE data, results show that
only 2% of agents cannot reach within 3 meters to the target.



different language and combine the results at the end for
submitting to the test server.

Hardware and Time Cost On R2R-CE, we train the
CMA and the VLNœ BERT for 50 epochs with a batch size
of 16, both models take about 3.5 days to complete using a
single NVIDIA RTX 3090 GPU. On RxR-CE, we train the
models for 25 epochs on a single GPU, with a batch size of
16 and 8 for the CMA and the VLNœ BERT, respectively.
The training takes about 3 days per language due to the mul-
tilingual and larger dataset, and longer paths.

B.3. Evaluation Metrics (§3.1)

Trajectory Length (TL): the average navigation path
length in meters, Navigation Error (NE): the average dis-
tance between the target and the agent’s final position in
meters, Success Rate (SR): the ratio of stopping within 3
meters to the target, Success weighted by the normalized
inverse of the Path Length (SPL) [1], normalized Dynamic
Time Warping (nDTW) and Success weighted by normal-
ized Dynamic Time Warping (SDTW) [11]. While SR fo-
cuses on the accuracy of agent’s decisions, SPL measures if
the agent navigates efficiently, nDTW and SDTW measure
if the agent follows the given instructions by computing the
similarity between the executed path and the ground-truth
path.

C. Visualization (§5.2)
Figure 4 and Figure 5 visualize the agent’s trajectories

and the predicted waypoints at each step. As shown by
the waypoints (indicated with cylinders) in panoramas and
the occupancy maps, most of the predictions are nicely po-
sitioned at accessible spaces, pointing towards explorable
directions around the agent. Thanks to the predicted way-
points, the agent often only needs to make a few decisions
for completing a long navigation task. However, in some
cases, e.g. Figure 5.(Right); the agent is not able to explore
certain part of the environment when the predictor fails to
produce a waypoints, which disturbs the training and in-
hibits the navigation. We suggest that future work to utilize
the online structural information (e.g. depth) and agent’s
behavior, or to make the predictor to collaborate with the
agent for producing more flexible waypoints.

D. Simulator Configurations (§5.1)
According to the official configurations4, agents in R2R-

CE [2, 12] and in RxR-CE [13] are set up differently in
Habitat [15]. For example, agent in RxR-CE is shorter
in height so that it can access places in the environments

4R2R-CE code: https://github.com/jacobkrantz/VLN-CE, RxR-CE
code: https://github.com/jacobkrantz/VLN-CE/tree/rxr-habitat-challenge.

where an R2R-CE agent cannot reach. For a fair com-
parison to previous works, agents in our experiments are
set up with the standard dimensions for R2R-CE and RxR-
CE, respectively. On the other hand, to facilitate the use of
the same waypoints predictor and the powerful pre-trained
depth-encoder [19] in the two datasets, as well as to de-
crease the rendering cost, we adjust the camera parameters
in RxR-CE. Some key configurations are listed here, where
the commented numbers are the original values.

R2R-CE Configurations:

FORWARD_STEP_SIZE: 0.25
TURN_ANGLE: 3x #15
AGENT:

HEIGHT: 1.50
RADIUS: 0.10

HABITAT_SIM:
ALLOW_SLIDING: True

RGB_SENSOR:
WIDTH: 224
HEIGHT: 224
HFOV: 90

DEPTH_SENSOR:
WIDTH: 256
HEIGHT: 256
HFOV: 90

RxR-CE Configurations:

FORWARD_STEP_SIZE: 0.25
TURN_ANGLE: 3x #30
AGENT:

HEIGHT: 0.88
RADIUS: 0.18

HABITAT_SIM:
ALLOW_SLIDING: False

RGB_SENSOR:
WIDTH: 224 #640
HEIGHT: 224 #480
HFOV: 90 #79

DEPTH_SENSOR:
WIDTH: 256 #640
HEIGHT: 256 #480
HFOV: 90 #79

3x indicates that the step-wise turning angle is a value in
p0˝, 3˝, . . . , 357˝q, according to the angular precision of the
waypoints predictor.

Turning Angles We would like to point out that a
TURN_ANGLE of 30˝ is likely to be unreasonable in the of-
ficial RxR-CE configurations because such a large turning

https://github.com/jacobkrantz/VLN-CE
https://github.com/jacobkrantz/VLN-CE/tree/rxr-habitat-challenge


angle will prevent the agent from heading to certain nav-
igable directions. Moreover, since the ground-truth con-
tinuous paths (and the step-wise ground-truth actions) in
RxR-CE are generated using a 30˝ turning angle, it results
in a large number of zigzag steps while the agent should
walks a straight line5. As a result, the original ground-truth
paths are inappropriate for imitation learning or for evaluat-
ing SPL and nDTW. On the other hand, our waypoints pre-
dictor enables an efficient imitation learning without using
ground-truths computed with a pre-defined fixed angle.

Sliding Unlike R2R-CE, agents in RxR-CE are not al-
lowed to slide along obstacles on collision, which drasti-
cally increases the difficulty of the task and results in agents
that can easily fall into deadlocks. To address this issue, we
first constrain the vast majority of predicted waypoints to be
positioned in open space by stopping augmenting waypoints
during training, so that an agent has less probability of hit-
ting obstacles. Moreover, we implement a simple function
which runs some test steps to check for navigability around
the agent when it is stuck at the same position, and assists
the agent to escape from deadlocks.

Model No Sliding Unseen RxR Sliding Unseen RxR
NEÓ SRÒ SPLÒ nDTWÒ NEÓ SRÒ SPLÒ nDTWÒ

CMA 8.76 26.59 22.16 47.05 8.08 31.36 26.93 47.36
VLNœ BERT 8.98 27.08 22.65 46.71 7.62 33.25 28.45 47.57

Table 2. Agents performance with and without sliding.

Table 2 compares the navigation performance in RxR-
CE with and without allowing the agents to slide along ob-
stacles on collision. For each model, we train three mono-
lingual agents independently, the results are averaged and
presented in the table. By enabling sliding (in which case
the waypoint augmentation can be applied), both the CMA
and the VLNœ BERT achieve significantly better results.

E. Limitations (§4.1 & §5.2)
In this section, we would like to share some limitations

of our proposed method, i.e. the candidate waypoints pre-
dictor. Although our experiments demonstrate the high ac-
curacy and the strong generalization ability of the module,
we believe this information will shine some light on po-
tential room for improvement and greatly benefit future re-
search following this work.

Number of Candidates We limit the maximum number
of predicted waypoints to be 5 at any position to reduce the
computational cost and stabilize the training of the agents.
However, there exists some spatial structures where a po-
sition can lead to more navigable directions. We suggest

5The inflection coefficient of steps is only 1.9 for trajectories in RxR-
CE, suggesting that the agent changes actions unreasonably frequently.
This number is about 3.2 in R2R-CE when using a 15˝ turning angle.

future work to consider a dynamic number of waypoints at
different positions.

Prediction at Rare Structures As shown in Figure 5, at
some rare structures in the environment such as stairs, the
candidate waypoints predictor fails to produce a waypoint
on stairs and therefore inhibits agent’s navigation. The main
reason behind this issue is the amount of training samples
for the predictor is insufficient at those structures. Future
work can identify rare structures to sample more data and
improve the loss function to balance the learning.

Online Prediction Adjustment Our agent fully trusts
and applies the predicted waypoints to navigate, which re-
sults in issues mentioned above. This problem is more se-
vere in RxR-CE as the agents can easily enter deadlocks
but the predicted waypoints cannot help the agents to es-
cape from them. We suggest future work to equip the agent
with the ability to adjust waypoints according to the local
structure or the agent’s control outcomes.

Update Waypoints Predictor Although our candidate
waypoints predictor demonstrates high accuracy in unseen
MP3D [4] environments, it is unclear if it can be trans-
ferred to other distinct and out-of-domain scenes. It would
be valuable to develop a waypoints predictor which can be
updated to adapt new environments (even without the pre-
defined connectivity graphs).

State-Conditioned Waypoints Prediction In this work,
we argue that decoupling the waypoint prediction and
agent’s decision making can reduce agent’s state space and
facilitates learning. However, we also recognize that the
state information such as the navigation progress and land-
marks in instruction could benefit the waypoints predictor
for creating more effective waypoints to reach the target.
Future work could combine the two ideas to build a way-
points predictor that promotes the navigation.

F. Societal Impact
In this research, we apply the R2R-CE [2] and the RxR-

CE [13] datasets, which are available under license from
Matterport3D [4]. The datasets contain thousands of pho-
tos of indoor environments and instructions in different lan-
guages for traversing the environments; None of the pho-
tos contain recognizable individuals and none of the in-
structions contain inappropriate language. Experiments are
safely and confidentially performed in the Habitat Simula-
tor [15]. This research is at the early stages of pushing to-
wards embodied AI that follows human instructions, there
are minimal ethical, privacy or safety concerns. In the fu-
ture, if a such robot is implemented in real-world, it could
benefit the society by assisting people with daily work.



Environment A, floor 1-2 Environment B, floor 1 Environment C, floor 1

Environment D, floor 1-2

Environment E, floor 1-2 Environment F, floor 1

Figure 2. Our Habitat-MP3D graphs.



MP3D Graphs Habitat-MP3D Graphs

Figure 3. MP3D graphs versus our Habitat-MP3D graphs.



Step 1: Forward

Step 2: Forward

Step 3: Forward

Step 4: Forward

Step 5: Forward

Step 6: Forward

Step 7: Forward

Step 8: Stop

Instruction: Walk through doorway to exit room, turn right in hallway and
walk towards display cabinet, turn left at end of hallway, enter room, walk
past bed, walk through doorway on the left after dresser, stop in front of sink.

PL: 9.27 NE: 0.62 SPL: 88.51 nDTW: 93.35 Navigation Successful

Step 1: Forward

Step 2: Forward

Step 3: Forward

Step 4: Forward

Step 5: Forward

Step 7: Stop

PL: 9.01 NE: 0.59 SPL: 0.91 nDTW: 95.73 Navigation Successful

Instruction: In the entry way go up the stairs and in the hallway at the top
take a left and go past the dining room into the entry way with the stairs on
the right side and stop right between the bottom of the first stair and the
console table on the left.

Step 6: Forward

Figure 4. Visualization of trajectories and predicted waypoints. Both samples are successful cases in unseen environments.



Step 1: Forward

Step 2: Forward

Step 3: Forward

Step 4: Forward

Step 5: Forward

Step 6: Forward

Step 7: Forward

Step 8: Stop

Instruction: Go straight through the kitchen then turn right and head down
the hall then turn right and head all the way down into the bedroom. Wait at
the entrance.

PL: 9.50 NE: 0.23 SPL: 89.56 nDTW: 95.13 Navigation Successful PL: 37.15 NE: 8.95 SPL: 0.00 nDTW 18.45 Failed after 20 High-Level Steps

Instruction: Enter the room and turn around to see the stairs. Go up the
stairs, then take a right, and stop in the bedroom doorway.

Step 2: Forward

Step 3: Forward

Step 4: Forward

Step 5: Forward

Step 6: Forward

Step 7: Forward

Step 8: Forward

Step 1: Forward

Figure 5. Visualization of trajectories and predicted waypoints. Left: The waypoints predictor produces inaccessible waypoints during
navigation (step 2), but the agent avoids choosing those waypoints and eventually reaches the target. Right: The waypoints predictor fails
to provide a waypoint on the staircase, so that the agent wanders around the landing and unable to reach the target.
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