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A. Additional Experimental Details

In all our experiments, if not otherwise stated, we use
one layer Transformer Encoder. Meanwhile, The proposed
BatchFormer is inserted after the global average pooling
layer in ResNet.

Long-Tailed Recognition. For Balanced Softmax [13],
we directly insert BatchFormer before the classifier, and
train the network with 128 batch size on 1 V100 GPU for 90
epochs. The initial learning rate for Balanced Softmax [13]
is 0.05 (it is linearly decreased according to the batch size)
and we set the learning rate of the weights of BatchFormer
module to 0.005 to avoid overfitting. For RIDE [19], we
train the network with a batch size of 400 on 4 V100
GPUs for 100 epochs with an initial learning rare of 0.1 on
ImageNet-LT and 0.2 on iNaturalist 2018 respectively. For
a fair comparison, we verify BatchFormer based on 3 ex-
perts RIDE. Specifically, a shared BatchFormer is incorpo-
rated in all expert branches, i.e. the module of BatchFormer
is shared among 3 expert heads. Experimentally, we find it
is not necessary to utilized shared classifier for RIDE. We
thus remove shared classifier in RIDE. We think this might
be because the multiple experts internally maintain the fea-
tures between before and after BatchFormer. For Paco [5],
we use default hyper-parameters of Paco on ImageNet-LT
with four V100 GPUs, on CIFAR-100-LT with a single
V100 GPU, and on Places-LT with a single V100 GPU. We
simply insert BatchFormer in the query encoder, momen-
tum encoder and prediction head, respectively. Meanwhile,
the proposed BatchFormer is shared among those places.
See more details in the provided code for MoCo. We find
it requires 9 days to train Paco on iNaturalist18 [16] with
4 V100 GPUs. Thus, we directly evaluate BatchFormer on
RIDE which only requires 32 hours.

Compositional Zero-Shot Learning. We would like to
clarify some details when reproducing the results of [10]
on UT-Zap50K. Specifically, we can not fully reproduce
the result of [10] on UT-Zap50K due to the missing de-
tails. We also find the result with learnable feature extractor

of [10] on UT-Zap50K is much better than the result with
fixed feature extractor in Table 2 of [10], which is largely
different from the results on other datasets. Meanwhile, the
same problem has been noticed by others on github issues
of [10], i.e., the result can not be unable to fully reproduced
(https://github.com/ExplainableML/czsl/issues/4). There-
fore, all our experiments are based on the reproduced result
for a fair comparison with [10].

Domain Generalization. We mainly evaluate Batch-
Former on domain generalization by using the following
two baseline methods: Transfer-Learning-Library [7] and
SWAD [2]. [7] provides massive traditional and recent
methods for domain generalization, and we thus simply ap-
ply BatchFormer to those method and evaluate the effec-
tiveness of BatchFormer. Specifically, we use the default
setting of [7] for each method, and reproduce the result of
each method with [7] for a fair comparison. All experiments
are conducted three times and the results are averaged. For
SWAD [2], we use the released code and default setting to
reproduce the result of ResNet-18.For fair comparison, we
also provide the result of ResNet-50.

Self-Supervised Learning. BatchFormer is also plug-
gable to contrastive learning. Specifically, with Batch-
Former, we train MoCo-v2 [3] and MoCo-v3 [4] for 200
epochs and 300 epochs respectively. We follow all de-
fault training settings when comparsing with MoCo-v2 and
MoCo-v3. Since it is different from supervised learning, we
provide the code based on MoCo-v3. As the released code
of MoCo requires 16 GPUs with 32GB memory, we con-
duct all contrastive learning experiments using two cluster
nodes with 8 NVIDIA A100 GPUs (40GB) for each node.
We keep all other experimental details same as [3] and [4]
for a fair comparison.

B. Additional Experiments

To better demonstrate the effectiveness of the proposed
BatchFormer, we provide additional experimental results on
more tasks.
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Table 1. Illustration of BatchFormer on Generalized Zero-Shot
Learning based on [18]. Unseen and Seen are the Top-1 accu-
racies tested on unseen classes and seen classes, respectively, in
GZSL.

Method
CUB [17]

Unseen Seen Harmonic mean
IZF [14] 52.7 68.0 59.4
TF-VAEGAN [11] 52.8 64.7 58.1
CE-GZSL [18] 63.9 66.8 65.3
CE-GZSL*(reproduced) 67.5 65.1 66.3
+ BatchFormer 68.2 65.8 67.0

Table 2. Illustration of BatchFormer for MoCo on VOC2007 [6].
Here, for a fair comparison, we use the the released code of MoCo-
v2 and MoCo-v3 to run the experiments in the same setting, and
obtain the baseline.

Methods AP AP50 AP75
MoCo-v2* [3] 56.4 82.1 63.1
+BatchFormer 56.7 82.0 63.6
MoCo-v3 [3] 46.6 78.2 48.9
MoCo-v3 [3] 48.0 78.8 51.1

B.1. Generalized Zero-Shot Learning

We also evaluate BatchFormer on generalized zero-shot
learning task. Specifically, we report the accuracy of
“seen”, “unseen”, and the harmonic mean of them (unseen
and seen). We perform experiments on one of the most pop-
ular datasets for generalized zero-shot learning, CUB [17],
which includes 11,788 images from 200 bird species. We
build a baseline with the released code of [18] and achieve
better results than [18]. As shown in Table 1, the proposed
BatchFormer achieves a new state-of-the-art on Unseen and
Harmonic mean.

B.2. Self-Supervised Learning

Object detection on VOC2007. We also evaluate Ob-
ject Detection of MoCo on VOC2007 [6] in Table 2. Similar
as MoCo-v2 [3], we use the pre-trained model to fine-tune
Faster-RCNN on VOC2007 based on Detectron2 [21]. We
find MoCo-v3 achieves worse result on VOC2007. How-
ever, BatchFormer consistently improves the object detec-
tion on VOC2007. Here, we train MoCo-v2 for 200 epochs,
and MoCo-v3 for 100 epochs. Specifically, we think that the
number of training epochs (only 100 epochs) of MoCo-v3
might limit the performance on VOC2007.

B.3. Image Recognition

Table 3 demonstrates BatchFormer for Image Classifi-
cation. We find BatchFormer achieves comparable perfor-
mance among ResNet50. This shows BatchFormer does not
degrade the performance when the distribution of data is
balanced.

Table 3. Illustration of BatchFormer for Image Recognition.

Methods Epochs Top-1 Top-5
ResNet50 [20] 200 78.9
ResNet50 + BatchFormer 200 78.9 -

Table 4. Illustration of BatchFormer for Domain Generalization
under different works on PACS [9]. Here, the baseline is from
[7]. SWAD [2] is reproduced based on the released code of [2].

Methods art paint cartoon sketches photo Avg.
Baseline 81.3±0.7 76.1±0.6 75.5±2.6 95.4 ±0.2 82.0
+BatchFormer 82.4±1.5 76.4±1.2 75.7±1.0 95.1±0.4 82.4
CORAL [15] 79.2±1.7 75.5 ±1.1 71.4±3.1 94.7±0.3 80.2
+BatchFormer 80.6±0.9 74.7±1.9 73.1±0.3 95.1±0.3 80.9
IRM [1] 81.0±0.6 71.4±4.1 68.1±7.1 95.0±0.6 78.9
+BatchFormer 78.9±3.1 71.0±7.1 71.5±2.8 96.0±0.3 79.4
V-REx [8] 80.8±1.8 75.3±1.4 73.3±0.9 95.9±0.0 81.3
+ BatchFormer 82.0±0.3 76.3±0.7 75.2±1.7 95.3±0.1 82.2
MixStyle [23] 81.7±0.1 76.8±0.0 80.8±0.0 93.1±0.0 83.1
+BatchFormer 84.8 ±0.4 75.3±0.0 81.1 ±0.4 93.6±0.0 83.7
SWAD* [2] 83.1±1.5 75.9±0.9 77.1±2.4 95.6±0.6 82.9
+BatchFormer 84.3±0.8 76.9 ±1.2 78.2±1.8 95.7±0.6 83.9
ResNet50
V-REx [8] 83.8±4.8 81.0±0.0 97.7±0.4 77.7±3.1 85.0
+ BatchFormer 87.3 ±5.0 80.2±4.6 97.1±1.7 77.9±4.4 85.6
IRM [1] 88.2±0.6 79.8±1.0 97.6±0.5 77.6±0.7 85.8
+ BatchFormer 89.0±0.98 80.1 ±1.0 98.0±0.4 79.8±0.4 86.8
SWAD [2] 89.4±0.7 83.7±1.2 97.7±0.6 82.5±0.8 88.1
+BatchFormer 90.2±0.5 84.0±1.0 97.3±0.3 83.0±0.6 88.6

Table 5. Illustration of BatchFormer for Domain Generalization
based on recent work [2] on OfficeHome

Methods Art Clipart Product RealWorld Avg.
SWAD* [2] 54.5±0.8 49.4±0.1 70.9±0.1 72.7±0.2 62.1
+ BatchFormer 57.8±0.1 51.0±0.1 73.4±0.2 75.1±0.1 64.3
ResNet-50
IRM [1] 66.8±0.2 54.9±0.8 77.5±0.7 80.5±0.4 69.9
+BatchFormer 67.7 ±0.2 55.5±0.8 78.4±0.5 81.0±0.3 70.6
SWAD* [2] 65.9±0.8 58.0±0.1 78.5±0.5 80.2±0.7 70.6
+ BatchFormer 66.7±0.3 57.9±0.3 79.2±0.4 80.6±0.7 71.1

B.4. Domain Generalization

We provide more experimental results based on [7] in
Table 4. Experiments on OfficeHome, VLCS, TerraIncog-
nita are provided in Table 5, Table 6 and Table 7 respec-
tively. The default backbone is ResNet-18.

B.5. Domain Adaption

We also demonstrate BatchFormer on Domain Adaption
on VisDA2017 [12]. Table 8 shows BatchFormer effec-
tively improves the corresponding baseline, i.e., MDD [22].



Figure 1. Grad-Cam demonstration of BatchFormer on low-shot test images based on [13]. The left images show BatchFormer enables the
model pay attention on more details when the scene is simple, while the right images show BatchFormer facilitates the model ignore the
spurious correlation in the image. This is clear version of Figure 5 in the paper.

Table 6. Illustration of BatchFormer for Domain Generalization
based on recent work [2] (ResNet-18) on VLCS

Methods Caltech101 LabelMe SUN09 SUN09 Avg.
SWAD* [2] 97.2±1.4 61.4±0.1 71.2±1.7 75.5±0.8 76.3
+ BatchFormer 97.2±0.8 61.3±1.1 71.7±1.0 77.4±0.4 76.9

Table 7. Illustration of BatchFormer for Domain Generalization
based on recent work [2] (ResNet-18) on TerraIncognita

Methods Art Clipart Product RealWorld Avg.
SWAD* [2] 47.6±3.0 33.8±4.5 53.6±1.8 33.3±0.6 42.1
+ BatchFormer 49.8±1.8 40.3±2.0 55.2±1.2 34.0±1.1 44.8

Table 8. Illustration of BatchFormer for Domain Adaption on
VisDA2017 [12]. The backbone is ResNet-101. Experiments are
based on [7].

Methods Synthetic − > Real
MDD [22] 76.8±1.5
+BatchFormer 77.8 ±2.0

Table 9. Ablation Studies of different layers on ImageNet-LT
based on Balanced Softmax [13]. The backbone is ResNet-10.

Method All Many Medium Few
BatchFormer (1 layers) 43.2 52.8 40.4 25.6
2 layers 43.2 52.8 40.3 26.0
4 layers 42.7 52.1 40.1 25.4
8 layers 43.3 53.3 40.2 26.1
16 layers 43.1 52.9 40.0 26.6

C. Ablation Studies

Number of Layers. We use one layer BatchFormer in
our experiment. Table 9 demonstrates with more layers of

BatchFormer, we do not observe larger improvement. We
leave how to leverage more layers of BatchFormer to im-
prove the performance in future work.

BatchFormer without PaCo loss [5]. We notice
BatchFormer mainly improves PaCo on Many category on
CIFAR-100-LT (imbalance ratio 100). We thus conduct ad-
ditional ablation study on BatchFormer for PaCo. Here, we
remove the PaCo loss with Balanced loss [5] to build the
baseline. we observe consistent results in the Table 10. No-
ticeably, the baseline without PaCo loss is even better than
the one in the main paper.

D. Visualized Comparison
Figure 1 provides clear figure of the Grad-Cam Figure in

the main paper. More comparisons are included in Figure 2,
Figure 3, Figure 4, where we choose the top 100 classes on
ImageNet for demonstration.

Table 10. Illustration of BatchFormer without PaCo loss [5] on
CIFAR-LT-100.

Method
100 200

All Many Med Few All Many Med Few
Baseline [52] 52.0 68.1 53.2 31.6 47.31 67.8 52.6 27.3
+ BatchFormer 52.6 68.7 53.2 33.1 48.13 68.9 53.1 28.2



Figure 2. More Grad-Cam illustration of BatchFormer on low-shot test images based on [13]. The figures are also provided in the directory.



Figure 3. More Grad-Cam illustration of BatchFormer on low-shot test images based on [13]. The figures are also provided in the directory.



Figure 4. More Grad-Cam illustration of BatchFormer on low-shot test images based on [13]. The figures are also provided in the directory.
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