
Pushing the Limits of Simple Pipelines for Few-Shot Learning:
Supplemental Material

In this supplemental material, we present:

• In Section 2, we include additional (per-domain) results for Table 1 in the main paper.

• In Section 3, we include additional (per-domain) results for Table 1 and Table 4 in the main paper.

• In Section 4, we investigate the impact of the hyper-parameters for the fine-tuning phase.

• In Section 5, we show the T-SNE plots before and after ProtoNet meta-training.

1. Per-Episode vs Per-Domain Fine-Tuning
Our fine-tuning results in the main paper were based on per-episode fine-tuning. As discussed in Section 3.3, this means a

learning rate is selected per episode based on the augmented support set. Alternatively, if we are able to see a few labeled
episodes from a particular domain, a per-domain learning rate selection can be done, which would not impose the same
additional computational overhead once tuned on a given domain.These episodes would essentially correspond to a domain-
wise validation set which is not provided in standard cross-domain FSL benchmarks, although it could be a reasonable
assumption for many practical cross-domain scenarios. In this supplement, we also report per-domain results.

2. Additional results for Meta-Dataset
In this section, we show a complete view of the results presented in Table 1 in the main paper, including the outcomes

of different pre-training methods (see Table 1), the outcomes of meta-training on ImageNet domain (see Table 2), and the
outcomes of meta-training on eight pre-specified domains (see Table 3).

As indicated in the main paper, our pipeline is named in a form of “P > M > F (backbone)”, where “P”, “M” and “F” are
taken from the first letters of pre-training, meta-training and fine-tuning respectively. In this section, we only examine the
pre-training and backbone architecture parts with meta-training fixed to ProtoNet. As an example, in Table 2, we use “DINO >
PN (ViT-small)” to denote the pipeline that uses DINO pre-training, ProtoNet meta-training with backbone architecture being
ViT-small.

To clarify the shorten notations in Table 1, Table 2 and Table 3, we make a list here:

• DINO: self-distillation pre-training on ImageNet-1k dataset by [2].

• BEiT: BERT pre-training on ImageNet-21k dataset by [1].

• CLIP: Contrastive language-image pre-training on YFCC100M dataset by [3].

• Sup21k: Supervised pre-training on ImageNet-21k dataset.

• Sup1k: Supervised pre-training on ImageNet-1k dataset.

• BEiT + Sup21k: BERT unsupervised pre-training first on ImageNet-21k dataset and then using the labels of ImageNet-
21k to fine-tune the model.
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INet Omglot Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg
DINO (ViT-small) 73.48 54.33 62.17 85.37 83.67 60.59 56.26 94.45 53.7 54.58 67.86
DINO (ViT-base) 74.85 59.44 55.36 80.08 84 59.61 56.65 94.84 51.81 57.1 67.374
BEiT (ViT-base) 17.12 23.96 17.21 18.59 39.79 23.89 13.69 45.81 16.16 16.36 23.258
CLIP (ViT-base) 60.66 62.12 54.08 80.26 76.51 62.90 30.76 68.43 47.33 41.95 58.5
DINO (ResNet50) 64.13 52.51 57.02 62.63 84.5 60.78 50.41 92.18 58.27 55.43 63.786
CLIP (ResNet50) 51.67 44.16 44.18 70.2 70.64 47.88 34.13 87.97 39.59 41.63 53.205
Sup21k (ViT-base) 67.00 37.02 47.72 82.9 79.77 52.25 41.98 95.7 46.22 53.46 60.402
BEiT + Sup21k (ViT-base) 33.85 23.95 33.92 52.07 63.79 32.60 28.19 67.3 27.18 29.65 39.25
Sup1k (ViT-base) 89.1 60.71 55.36 79.8 79.75 61.28 47.45 88.44 56.3 57.20 67.539
Sup1k (ResNet50) 76.22 47.31 55.75 76.40 80.40 51.26 43.42 85.48 50.46 57.10 62.38

Table 1. Pre-training results on Meta-Dataset – Comparison of different pre-training methods and backbone architectures.

In-domain Out-of-domain
INet Omglot Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg

DINO > PN (ViT-small) 74.69 56.91 60.5 85.04 84.21 61.54 54.78 94.57 54.21 57.35 68.38
DINO > PN (ViT-base) 76.69 62.2 54.76 81.58 84.48 60.64 55.93 95.14 56.81 60.27 68.85
CLIP > PN (ViT-base) 76.03 59 65.75 90.2 83.08 65.45 53.2 96.35 58.65 61.2 70.891
DINO > PN (ResNet50) 67.08 49.21 58.46 72.08 85.01 59.2 50.53 89.91 55.44 53.94 64.086
CLIP > PN (ResNet50) 69.41 60.72 57.53 83.66 80.03 55.58 50.07 93.39 48.56 50.14 64.909
Sup21k > PN (ViT-base) 85.88 39.72 52.03 94.54 83.42 54.58 57.06 99.01 47.74 69.02 68.3
BEiT+Sup21k > PN (ViT-base) 84.39 60.54 74.04 95.66 86.14 65.24 64.25 99.19 63.02 69.91 76.238
Sup1k > PN (ViT-base) 90.48 62.96 54.89 78.88 80.02 61.81 45.52 88.56 55.61 59.12 67.785

Table 2. Meta-training results on Meta-Dataset (ImageNet only) – Comparison of different pre-training methods and backbone
architectures.

In-domain Out-of-domain
INet Omglot Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg

DINO > PN (ViT-small) 73.54 91.79 88.33 91.02 81.64 79.23 74.2 94.12 54.37 57.04 78.528
DINO > PN (ViT-base) 73.55 91.54 89.73 92.94 81.52 80.2 78.28 94.53 53.65 59.13 79.507
CLIP > PN (ViT-base) 74.76 92.26 91.42 93.55 80.97 80.8 79.13 95.64 54.52 56.8 79.985
DINO > PN (ResNet50) 63.7 85.91 80.3 81.67 82.69 72.84 60.03 91.75 54.26 50.67 72.382
CLIP > PN (ResNet50) 64.86 92.09 89.19 89.17 71.67 78.71 76.15 91.25 51.1 45.88 75.007
Sup21k > PN (ViT-base) 84.86 85.71 83.77 95.89 85.1 78.47 74 99.17 59.86 67.57 81.44
BEiT+Sup21k > PN (ViT-base) 81.96 94.19 91.62 93.76 81.3 83.48 81.76 98.84 58.83 61.81 82.755
Sup1k > PN (ViT-small) 83.87 91.22 87.9 89.2 78.11 78.7 70.33 94 56.24 57.16 78.673
Sup1k > PN (ViT-base) 89.75 93.48 91.15 92.48 78.52 80.65 75.97 95.78 53.47 55.89 80.714
Sup1k > PN (ResNet50) 68.04 86.17 80.72 80.48 71.65 70.78 59.58 84.33 50.06 50.29 70.21
None > PN (ViT-small) 37.25 74.14 45.25 49.66 61.49 70.24 43.23 72.03 39.33 35.43 52.805
None > PN (ResNet50) 40.74 90.67 80.67 68.88 62.4 75.96 55.72 75.37 43.11 35.49 62.901

Table 3. Meta-training results on Meta-Dataset – Comparison of different pre-training methods and backbone architectures.

3. Additional results for miniImageNet and CIFAR-FS
We also evaluate different pre-training methods and backbones on miniImageNet and CIFAR-FS, which is shown in Table 4.

We do not include some of the results to the main paper because supervised pre-training on ImageNet is only useful to check
the upper bound performance.

4. Ablation study on fine-tuning’s hyper-parameters
There are three hyper-parameters for the fine-tuning stage: the learning rate, the number of gradient descent steps and the

probability of switching on data augmentation for the support set. We show in Figure 1 that the dominant hyper-parameter is
the learning rate. From the results, we also see that the higher the probability of switching on data augmentation the better,
while 50 gradient steps give relatively good performance with the right learning rate. Therefore, we fix the probability to 0.9



miniImageNet CIFAR-FS
5w1s 5w5s 5w1s 5w5s

DINO > PN (ViT-small) 93.1 98.0 81.1 92.5
DINO > PN (ViT-base) 95.3 98.4 84.3 92.2
CLIP > PN (ViT-base) 93.1 98.1 85.3 93.2
DINO > PN (ResNet50) 79.2 92.0 73.7 84.0
CLIP > PN (ResNet50) 78.9 92.2 71.4 82.6
Sup21k > PN (ViT-base) 97.2 99.2 92.3 96.7
BEiT+Sup21k > PN (ViT-base) 96.6 99 93.8 97.5
Sup1k > PN (ViT-small) 97.7 99.4 86.2 93.6
Sup1k > PN (ViT-base) 99.2 99.8 88.2 94.3
Sup1k > PN (ResNet50) 91.7 97.4 77 87.6
None > PN (ViT-small) 36.5 49.1 45.9 59.8
None > PN (ResNet50) 46.1 60.3 54.1 68.4

Table 4. miniImageNet & CIFAR-FS – Comparison of different pre-training methods and backbone architectures.

and let the numbers of steps to be 50 in the fine-tuning phase.
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Figure 1. Ablation study of fine-tuning’s hyper-parameters – The experiments are done in the validation set of the traffic sign domain and
the MSCOCO domain with learning rate fixed to either 0.001 or 0.01.

5. T-SNE plots: before and after meta-training
By using T-SNE visualization, We identify that the feature representation of DINO pre-training is already of high quality in

multiple domains. Three examples are shown in Figure 2, Figure 3 and Figure 4. In general, many semantic clusters have
already emerged, even though these domains where the clusters are sitting are not necessarily similar to ImageNet. This gives



0

0

0

0

0

0

0

0

00
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0 0

0

00

0

0

00

0

0
0 0

0

0

0
0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

00 0

0

0

0

0

0

1

1

1

1

1

1

1
1

1

1

1

1 1
1

1

1

1 1
1

1

111

1

1
1

1

1

1
11

1 1

1

1

1 1

1

1

1

1
1

1

1
1 1

1

1

1
1

1

1

1

1
1

1

1 1

1

1

1
1

1

1

1

1

1

1
11 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1 1

1

1

1

1

1 11

1

1

1

11

2

2

2

2

2

2

2

2

2
2

2

2
2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2 2

2

2

2

2

2

2

2
2

2

2

2

2

2

22

2
22

2

2

2

2

2

2

2

2
2 2

2

2
2

2

2
2

2

22

2

2

2
2

2

2

22

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3
33

3

3

3

33

33

3 33

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3
3

3

3

3

3
3
3

3

3

3
3

3

3

3

3

3

3

3

3

3

4

4

4

4 4

4
4

4

4

4

4

4

4

4

4

4

4 4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4 4
4

4

4

4
4 4

4

4

4

4

44

4

4

4

4

4

444

4

4

4

4

4

4

4

4

4

4

4

4

4 4
4

4

4

4

4

4

4

4

4

4 4

4

4

4

4

5

5

5

5

5

5

5
5

5

5

5

555

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5
5

5

5 5
5

5

555

555

5

5

5

5

5

5

5

5

5 5

5

5

5

5

5

5

5

5

5

5

5

5

5 5

5

5

5

5 5

5
5

5

5

5

55

5
5

5

6

6

6

6

6

6

66

6

66 6

66

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

6
6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

66

6

6
6 6

6

6

6
6

6

6

6 6

6

6

6

6

6

6

6
6

6

6

6

66
6

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7
7

7

7

7

7

7

7

7

7 7
7

7

7

7

7

7

7

7

7

7

7

7
7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7 7

77

7

7

7

7

7 7

7

7

7

7

7

77

7

7

7

7

7

7

7

7

7

7
8

8

8

8

8 8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8 8

8

8

8

8

88

8
8

8 8

8

8

88

8

8

8

8

8

8

88

8

8

8

8

8

8

8

8

8

8

8
8

8

8

88

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8
8

88

8

8

8

8

8

8

8

8

8

8

8

8
8 8

8

8

8

8

8
8

8

9
9

9

9
9

9

9

9
9

9

9

9

9

99

9

9

9

9

9

9

9

9

9

9

9

9
9

9

9

9

9

9

9
9

9

9
9 9

99 9

9

9

9

9

9

9

9

9

9

9

9 9

9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9
99

9

9

9

9

9

9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

10

10
10

10
10

10

10

10

10

10

10

10

10

10

10

10

10

10

1010

10

10

10
10

10

10
10

10

10

10 10

10

10

10 10

10

10

10

10

1010

10

10

10

10

10
10

10

10
10

10

10

10
10

10

1010

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10
10

10

10

10

10

10

10 10

10

10

10

10

10
10

10

10
10

10

10

10

10

10

10

10

10

10

1111
111111

11

11

11

1111

11

11

1111
11

11
11

11

1111

11

11

11

11

11

11

11

11

11

11

11
11

11

11
11

11

11

11

11

11

11

11
11

11

11

11

11

11

11

11
11

11

11

11

11 11

11

11

11

11

11

11

11

11

11

11

11

11

11

11
11

11

11

11

11

11

11

11

11

11

11

11

11

11
11

11

11

11

11

11

11

11
11

11

11

11

11

11

11

11

12

12

12

12
12

12
12

12

12

12
1212

12

12

12

1212
12

12

12

12

1212

12

12

12

12

12

12

12

12

12

12
12

12

12

12
12

12

1212
1212

12

12

12

12
12

12

12

12

12

12

12

12

12

12

12

1212
12

12

1212

12

12
12

12
12

12

1212 12

12

1212

1212
12

12

12

12
12
12

12

12
12

12

12

12
1212

12

12

12

12

12

12

12

12

1313

13

13

1313

13

13

13
13

13

131313

13

13131313
13

13

13

13

13

13

13

13
13

13

13

13

13

1313

13

13

13

13

13

13
13

13

13

13

13

13

13
13

1313
13

13
1313

13

13

1313

13
13

13

1313 13

13

13
13

13
13 13

13

13

13

13

13

13

13
13

131313

13

13

13
131313

13

13
13

1313 13
13

13

13

13
13

13

13

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

1414

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14
14

14
14

14

14

1414

14

14

14

14

14

14

14

14

14

14

14

14

14
14

14

14
14

14

14

14

14

14

14

14

14

14

14
14

14

14
14
14

14

14
14

14

14

14

14

14

14

14
14

14

1414

14

14

14

14

14

14

14

14

Pre-training

0

0

0

0

0 0
00

00
0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

00
0

0

0

000

0

0

0
0

0

0

0

0

0

0

0

0

0

0
0

00 00

0

0 0

0

0

0

0

0
0

0
0

0

0

0
0

0
0

0

0

0

0
0
0

0

0
00

0

0

0
0

0

00

0

0

0
0

00

0

0

0

0

0

1

11

1

1
1

1

1
1

1

1

1

111

1

1

1

1
1

1

1

1 1

1

111
1

11

1

1
1

1 1
1

1

1

1

1

1

1
1

1

1

1

1

11 1

1

1

1
1

1
1

1
1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1
1

1
11

1

1

1

1

1

1

1

1

1

1

1 11

1
1

1

1
1

1
1

2
2 22

2
2

22

2

2

2

2

2
2

2

2

2

2

2
2

2
2

2
2

2

2
2

2

2 2 2

2

2

2

2

2

2
2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
22

2

2 2

2

2
222
22 2

2
2

2

2
22

2

2

2

2

2
2

2

2

2

2

2
2

2

2

2

2
2

22

2

2

2

2

2

2

3
3 3

3

3

3

3

3
3

3

3

3 3

3

3

3

3

3
3

3
3

3
3
3

3

3

3 3

3
3

3

3

3

3
3

3

3

3

3333
3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

33

3 3
3

3

3

3

3

33 3

3
3 3

3

3

3
3

3

3

3

3

3

3

33

3

3

3

3
3

3

3

3

3
3

3

3

3

3
4

4

4

4

4

4
4

4 4

44
4

44
4

4
4

4

4
44

4

4

4
4

4
4

4

4

4

4

4

4
4

4
4

4

44 44

4

4
4
4

4

4

4

4

4

4

4
4

4

4
4

4

4
4

4

4

4

4
4

4

4

4
4

4

4
4

4

44
4

444 4

4

4

4

4

4

4

4

4
4

4

4

4

4
4

4

4

4

4

4 4

4

5

5

55

5

5
5
5

5

5

5

55

5
5

5

55

5

5

55

5

5
5

5

5

5

5

5
5

5
5
5

5
5

5
55

5

5 5
5

5

5 5

5

5
5

5

5

5
55

5

5
5

5

55
5

55 5
55

5
5

5

5
5

5
5
5

5

5

55 5

55

5

5
5
5

5

5
5
5

5

55

5
5

5
5

55
55

6

6
6 6

6

6
6

66

6
6

6
6
66

6
6

6
66

6
6
6 6

6

6
6

6

6
66

66
6

6
6

6
6

6
66

6

6
66

6

6

66

66
66
6

6

6

6

6

6
6

6
6
6

6 6
6
6

6
6

6

6
6

6
6 6
6

6

666

6
6
6

66

6

6

6

6
6

6

6
66

6

6

6

6
6

6

7
77 7

7

7

7 7

7

77 7
7

77
77 7

7

7

7
7

7
7

7
7

7

7
77

7

7

7
7

7
7

7

7
7

7

7

7

7

7

7

7

7

7

7

7
7

7 77
7

7 77
7

7

7
7

7

77

7

7

77
7

7
7

7
7 7

7
7

77

7

7

7

7

7
7

7

7
7

7
77

7

7

7
7

7

7 7

7
7

8

8

8

8

8
8

8

8

8

8

8

8

8

88

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8
8

88

8

8

8
8

8

8

8

8

8

8

8

8

88

8

8 8
8 8

8

8

8
8 8

8

8
8
8

8

8

8

8

88

8

8

8

8

8

8

8

8

8

8 8

8
8

8

88

8

8

8

8

9999

9

9
9

9

99
99

9
9

9
99

9

9

9

9

9

9

9

99

9

9

9

9

9

9

9

99

9

9

99
9

9 9

9

99
9

9

9
9

9

9

9 9

9
9

9

9

99
9 99 9

9

9
9

9

9

999
9

99
9
9 9

9
99
9

9

9

9
9 9

9

9

9
99

99
9

9
9 99

99

10

1010 10
10
10

10

10

10
1010
10

10

10

10
10

10
1010

10
10 10

1010
10

10 10

10

10

1010

1010

1010

10

10

10

10
1010

1010
10

10

10
10

10
1010
10

1010

10

10

1010

10
10

10
10
10

10
10

10

10
1010

10

10

10
1010

101010

10 10
10
10

1010

10

10

10

10

10

10

10
10

10

10

10

10

10

10

1010

10
10

11
11

11
11

1111

11
11

11
11

11
111111

11
11

111111

11

11

11

11

11

11

11

11
11

11

11

11
1111

11

11

11
11

11
11

11

11 11
11 11

11

11 11
11

11

11

11
1111

11

1111

1111

1111

11

11

11
11

1111

11

1111

11

11

11

11
11

11

11

11

1111
11

1111

11

1111

11

11

11

11
11

1111
11

11 11
11 11

11 11

11

12

12

12

12
12

12

12

12

12

121212

12
12

12

121212

1212
12

12
12

1212

12 1212
12

12
12

12

12
1212

12
12
12

1212

12 12

12
1212

12

12

12
12

12

12

12
12

12

12

12

12
12

12
121212

12

12
1212

12
12

12

12

12

12

12

12
1212

121212

12

12
12

1212
12

12

12
1212

12
12

12
12

121212
1212

12

12

13
13

13

1313

13
13

131313
13
1313

1313

1313

13

13
1313

13

13
1313 13

13131313

13

13

13
13

13

13 13
13

1313
1313

13

13 13
13

13
1313

1313
13

13
13

1313
13
13

13

13

13

131313

13

1313 13
13

13

1313

13

1313

13
13

131313
13

1313
13

13
13

13
13

13
13

13

13
131313

13
13 13

13
1314

1414

14 14
14

14
14

14

14

1414
14

14

1414

14

1414
14

14

14

14

14

14

14

1414 14

14

14

14

14

1414

14
14

14

14

14

14

14

14

14
14

141414
14
14

14

1414
14

14

14 14
1414

14

14
1414

14

14

14

14

14

14

14

14 14

14

1414

14

14

1414141414

14
14

14
14

14

1414
1414

1414

14

14

14

1414

14

14
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Figure 2. Aircraft domain

a very good initialization to ProtoNet so that it can refine the clusters to be much tighter. While the situation would be quite
different if we were training the ProtoNet from scratch, which are confirmed by the no-pre-training results in Table 3. This can
be explained in the sense of K-means clustering, where a good initialization is always desired.
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Figure 3. CUB domain
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Figure 4. Omniglot domain
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