Supplementary Materials for
DyRep: Bootstrapping Training with Dynamic Re-parameterization

A. More Ablation Studies
A.1. Performance on different operation spaces

Compared to the DBB [2] using 4 branches to build the augmented network, DyRep further adds 3 operations for more
flexible structures. We now conduct experiments to compare our DyRep with DBB using the same operation spaces for fair
comparisons. As summarized in Table 8, we train ResNet-50 using DyRep and DBB with 4 operations and 7 operations
on ImageNet and report their validation accuracies. When using the same operation space as DBB, our DyRep can also
enjoy significant efficiency and performance improvements. Besides, if we adopt DBB on our larger operation space, its
training cost will be higher, and our superiority will be more significant. Comparing 4 branches and 7 branches, the larger
one achieves better accuracy because of more diverse representations.

Table 8. Evaluation results of ResNet-50 on ImageNet dataset using different numbers of Rep operations. *: our implementation.

Rep method #operations FLOPs Params Training cost ACC (%)
Origin 1 4.09 25.6 7.5 76.14
DBB 4 6.79 40.7 13.7 76.71
DyRep 4 4.93 (-27.4%) 30.2 (-25.8%) 8.1 (-40.9%) 76.98 (+0.27%)
DBB* 7 8.02 48.3 17.3 76.87
DyRep 7 5.05 (-37.0%) 31.5 (-34.8%) 8.5 (-50.9%) 77.08 (+0.21%)

A.2. Effects of different update intervals ¢ of DyRep

We update the structures of the network in every ¢ epoch. If the structures are expanded more frequently, the final network
will be larger. As summarized in Table 9, we train the models with different update intervals ¢, and the results show that for a
small ¢, the accuracy will be further improved, but the training cost also increases accordingly. For efficiency consideration,
we choose a moderate frequency ¢ = 15 on CIFAR-10.

Table 9. Evaluation results of VGG-16 on CIFAR-10 with different update interval ¢.

Rep method Update interval ¢ Cost (GPU hours) FLOPs (M) Params (M) ACC (%)
origin - 2.4 313 15.0 94.68
DBB - 9.4 728 34.7 94.97

DyRep 5 13.3 1575 83.4 95.39
DyRep 10 8.8 992 33.6 95.33
DyRep 15 6.9 597 26.4 95.22
DyRep 30 5.8 522 23.7 9491
DyRep 50 4.1 430 20.3 94.82

A.3. Effects of different scoring metrics in our Rep

Many metrics [14,24,25] are proposed to measure the saliency score of weights in network pruning. In our paper, to
choose the most suitable metric, we conduct experiments to evaluate these scoring metrics in DyRep. The experimented
scoring metrics are summarized as follows.

For one operation with weights 0, its saliency score can be represented as following metrics:



* random: the score of each operation is generated randomly.
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* grad_norm: A simple baseline of summing the Euclidean norm of the gradients.
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e grasp: [25] aims to improve snip by approximating the change in gradient norm (instead of loss), therefore its grasp
metric is computed as

- oc
S:(6) =D —(Hgz ©6,), (14)

?

where H denotes the Hessian matrix.

* synflow: SynFlow [24] proposes a modified version (synflow) to avoid layer collapse when performing parameter prun-
ing.
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* vote: Inspired by [?], which leverages the above metrics to vote the decisions, we also provide a result of picking
operations with the most votes.

We measure all the metrics above on CIFAR-10 dataset, as summarized in Table 10. The random baseline even worsens
the performance as it could introduce some unnecessary disturbances to the original weights, showing that it is important in
choosing operations. Besides, synflow achieves the best performance compared to other metrics, and we thus adopt it as the
scoring metric in our DyRep.

Table 10. Accuracies of VGG-16 using different scoring metrics in DyRep. Origin denotes the original results of model without Rep.

Dataset origin random grad_norm snip grasp synflow vote
CIFAR-10 94.68 94.25 94.71 94.97 94.82 95.22 95.03
CIFAR-100 74.10 74.03 74.19 74.56 74.73 74.91 74.79

A 4. Effects of training with DyRep for different epochs

To validate the effectiveness of DyRep in boosting training, we adopt DyRep for the first 20,40,60,80, and 100 epochs, then
train the remained epochs with fixed structures. As illustrated in Figure 7, our DyRep can dynamically adapt the structures
thus is more steady compared to training with fixed structures. Besides, adopting Rep can always obtain higher accuracy than
fixed structures, showing that DyRep can improve performance in the whole training process.
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Figure 7. Training curves of adopting DyRep for different epochs on CIFAR-100. DyRep-/N denotes training with DyRep for the first N
epochs then fixing the structure for the latter 100 — IV epochs. DyRep with red line means adopting DyRep in the whole training.
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