
Supplementary Materials for
GreedyNASv2: Greedier Search with a Greedy Path Filter

A. Details of Search Spaces

A.1. Macro structures

In this paper, we conduct experiments on two macro structures of supernet, as presented in Table 6 and Table 7. The
MobileNetV2 supernet is used for MB-SE, MB-SE+MixConv, and MB-SE+MixConv+shuffle search spaces, while the Res-
50-SE adopts the same structure as ResNet-50 [5] in Table 7.

Table 6. Macro structure of our MobileNetV2 search space. input de-
notes the input feature size for each layer, channels means the output
channels of the layer, repeat denotes the repeat times of stacking the
same blocks, and stride is for the stride of first block when stacked
for multiple times.

input block channels repeat stride
2242 × 3 3× 3 conv 32 1 2
1122 × 32 MB1 K3 16 1 1
1122 × 16 Choice Block 32 4 2
562 × 32 Choice Block 40 4 2
282 × 40 Choice Block 80 4 2
142 × 80 Choice Block 96 4 1
142 × 96 Choice Block 192 4 2
72 × 192 Choice Block 320 1 1
72 × 320 1× 1 conv 1280 1 1
72 × 1280 global avgpool - 1 -

1280 FC 1000 1 -

Table 7. Macro structure of our Res-50-SE search space.

input block channels repeat stride
2242 × 3 7× 7 conv 64 1 2
1122 × 64 3× 3 max pool 64 1 2
562 × 64 Choice Block 256 3 1
562 × 256 Choice Block 512 4 2
282 × 512 Choice Block 1024 6 2
142 × 1024 Choice Block 2048 3 2
72 × 2048 global avg pool - 1 -

2048 FC 1000 1 -

A.2. Candidate operations

The candidate operations in Choice Block of each supernet are summarized as follows.
• MB-SE. Following the previous NAS methods [13, 14, 17], we conduct the same searching operations in MB-SE search

space, which consists of 13 MobileNetV2 [12] blocks with optional SE [6] module, as summarized in Table 8.
• MB-SE+MixConv. We design a new MobileNetV2 search space with additional MixConv blocks [15], which aims to

mix the outputs of different kernel sizes (3× 3, 5× 5, and 7× 7) of depth-wise convolution in MobileNetV2 block.
• MB-SE+MixConv+Shuffle. To further validate our performance on a larger search space, we add the ShuffleNetV2 [11]

blocks in SPOS [4].
• Res-50-SE. We leverage the blocks in ResNet [5] and ResNeXt [16] to build our Res-50-SE search space, and all of

them are equipped with additional SE modules. We design blocks with different kernel sizes (3, 5, and 7), and a ratio is
used to control the intermediate number of channels, which has choices 0.5, 1.0, and 1.5, e.g., 0.5 means that the number
of intermediate channels is 0.5× compared to the original one. The total number of candidate operations is 19, with an
additional ID operation for layer removal.

The detailed settings of candidate operations are summarized in Table 8 and Table 9.



Table 8. Candidate operations in our mobile search spaces.

search space block type expansion ratio kernel size SE
- MB1 K3 1 3 no

MB-SE

ID - - -
MB3 K3 3 3 no
MB3 K5 3 5 no
MB3 K7 3 7 no
MB6 K3 6 3 no
MB6 K5 6 5 no
MB6 K7 6 7 no

MB3 K3 SE 3 3 yes
MB3 K5 SE 3 5 yes
MB3 K7 SE 3 7 yes
MB6 K3 SE 6 3 yes
MB6 K5 SE 6 5 yes
MB6 K7 SE 6 7 yes

MixConv

MB3 MIX 3 3+5+7 no
MB6 MIX 6 3+5+7 no

MB3 MIX SE 3 3+5+7 yes
MB6 MIX SE 6 3+5+7 yes

Shuffle

Shuffle 3 - 3 yes
Shuffle 5 - 5 yes
Shuffle 7 - 7 yes
Shuffle x - 3 + 3 + 3 yes

Table 9. Candidate operations in our Res-50-SE search space.

block type basic block ratio kernel size SE
ID - - - -
ResNet K3 0.5× ResNet 0.5 3 yes
ResNet K3 1× ResNet 1.0 3 yes
ResNet K3 1.5× ResNet 1.5 3 yes
ResNet K5 0.5× ResNet 0.5 5 yes
ResNet K5 1× ResNet 1.0 5 yes
ResNet K5 1.5× ResNet 1.5 5 yes
ResNet K7 0.5× ResNet 0.5 7 yes
ResNet K7 1× ResNet 1.0 7 yes
ResNet K7 1.5× ResNet 1.5 7 yes
ResNet K3 1× ResNeXt 1.0 3 yes
ResNeXt K3 1.5× ResNeXt 1.5 3 yes
ResNeXt K5 0.5× ResNeXt 0.5 5 yes
ResNeXt K5 1× ResNeXt 1.0 5 yes
ResNeXt K5 1.5× ResNeXt 1.5 5 yes
ResNeXt K7 0.5× ResNeXt 0.5 7 yes
ResNeXt K7 1× ResNeXt 1.0 7 yes
ResNeXt K7 1.5× ResNeXt 1.5 7 yes

B. Implementing Details of PU Learning
In the training of supernet, we train the path filter using VPU [1] every t = 5 epoch. At the first time we train it, the

weights of the path filter are randomly initialized, then the following training fine-tunes the weights obtained in the previous
training.

B.1. Complete learning objective in VPU

The core idea of VPU is the proposed variational loss as in Eq.(6). Besides, to further alleviate the over-fitting problem,
VPU incorporates a MixUp [18] based consistency regularization term to the variational loss (Eq.(6)) as

Lreg(Φ) = EΦ̃,ã[(logΦ̃− logΦ̃(ã))2], (10)

with

γ
iid∼ Beta(σ, σ),

ã = γ · a′ + (1− γ) · a′′,

Φ̃ = γ · 1 + (1− γ) · Φ(a′′).

(11)

Here ã is an architecture generated by mixing randomly selected a′ ∈ P and a′′ ∈ U , and Φ̃ represents the guessed
probability P(y = +1|a = ã) constructed by the linear interpolation of the true label and that predicted by Φ, σ is a hyper-
parameter to control the MixUp percentage. Unlike the original MixUp on images, our architecture vector a is a tuple of
discrete integers without semantic features, therefore, we conduct MixUp after the embedded features A, i.e.,

Aã = γ ·Aa′ + (1− γ) ·Aa′′ . (12)

Complete form of loss function in VPU. The complete loss function to train our path filter is as below:

L(Φ) = Lvar(Φ) + λLreg(Φ). (13)

In our experiments, we set σ = 0.3 and λ = 0.2 following the original configurations in VPU.



C. Searching Results of Baseline NAS Methods on Res-50-SE Search Space
In this paper, we propose a new search space named Res-50-SE for searching ResNet-like models. Here we conduct

experiments to compare our method with baselines SPOS [4] and GreedyNAS [17]. As the results summarized in Table 10,
we can see that our GreedyNASv2-L obtains the highest accuracy with the minimal cost. Besides, for GreedyNAS, since
each architecture has ∼ 4G FLOPs, the computation cost of multi-path sampling could be noticeably higher than the mobile
search spaces, and the training cost is larger than GreedyNASv2 as a result.

Table 10. Evaluation results of Res-50-SE search space on ImageNet. The results of SPOS and GreedyNAS are obtained by our implemen-
tations.

Methods
Top-1 Top-5 FLOPs Params Training Training cost Search
(%) (%) (M) (M) epochs (GPU days) number

SPOS [4] 80.6 95.1 4153 27.8 120 15.4 1000
GreedyNAS [17] 80.8 95.2 4125 28.1 49 11.3 1000

GreedyNASv2-L 81.1 95.4 4098 26.9 57 9 500

D. Transfer learning on object detection task
We transfer our searched models to verify the generalization performance on object detection task. Concretely, we train

both two-stage Faster R-CNN with Feature Pyramid Networks (FPN) [8] and one-stage RetinaNet [9] networks on COCO
dataset [10], and report the validation mAP in Table 11. Note that for fair comparisons, we train the networks using the
default configurations in mmdetection [2], with only modifications on backbone models. The results show that our obtained
models significantly outperform the baseline models.

Table 11. Evaluation results on COCO dataset.

Backbone
ImageNet FPN RetinaNet

Top-1 (%) mAP (%) mAP (%)

ResNet-50 76.1 37.4 36.5

GreedyNASv2-L 81.1 41.7 (+4.3) 40.9 (+4.4)

MobileNetV2 72.0 32.1 30.5

GreedyNASv2-S 77.5 35.4 (+3.3) 34.9 (+4.4)

E. More Ablation Studies
E.1. Effects of path-level shrinkage and operation-level shrinkage

To validate the effectiveness of the proposed path-level shrinkage and operation-level shrinkage methods, we conduct
experiments to ablate these two components in GreedyNASv2, as shown in Table 12.

Table 12. Effects of path-level and operation-level shrinkages on MB-SE+MixConv+Shuffle (large) search space.

Method Path-level shrinkage Operation-level shrinkage ACC in retraining (%) ACC on supernet (%)

SPOS [4] - - 75.5 33.4

GreedyNAS [17] ✓ - 76.5 35.1

GreedyNASv2 ✓ ✓ 77.5 43.8
GreedyNASv2 p ✓ 76.8 42.1

GreedyNASv2 ✓ p 77.2 39.6

E.2. Effect of path filter in search

In GreedyNASv2, we use the learned path filter to filter the predicted weak paths during the search. Now we conduct
experiments on MB-SE+MixConv+Shuffle search space to show the effectiveness of path filter in search. As the histogram of
searched accuracies shown in Figure 7 (a), searching with a path filter can reject a larger number of weak paths and obtain
higher accuracies, showing that the path filter can boost the searching efficiency.



35 36 37 38 39 40 41 42 43 44
ACC (%)

0

0.1

0.2

0.3

0.4

0.5
Fr

eq
ue

nc
y

w/ path filter
w/o path filter

(a)

supernet
retraining

40

42

44

46

48

76.6

76.8

77.0

77.2

77.4

77.6

0.6 0.7 0.8 0.9 1.0

Merging thresholds

A
C

C
 (%

)

(b)

Figure 7. (a): Histogram of accuracies of searched paths on supernet with or without using path filter. (b): Supernet and retraining
accuracies of different operation merging thresholds. Specifically, the threshold of 1.0 denotes no merging.

E.3. Effects of different operation merging thresholds

In our operation-level shrinkage, the operation pair with a similarity large than a certain threshold would be treated as
similar pair; then, we will merge them into one operation and obtain a smaller search space as a result. Here we conduct
experiments to show the performance of different merging thresholds. We train the MB-SE+MixConv+Shuffle supernet
using GreedyNASv2 with merging thresholds 0.6, 0.7, 0.8, 0.9, and 1.0, respectively, and report the supernet and retraining
accuracies of the searched models in Figure 7 (b). We can see that the smaller threshold would have more operations being
merged, and thus the accuracy on supernet would be higher. However, too aggressive mergings (thresholds 0.6 and 0.7)
would hurt the diversity of the search space; therefore, the performance of searched models would worsen.

E.4. Validate the correctness of operation similarity

To validate the correlation between our learned operation similarities and their corresponding evaluation performance,
we conduct experiments to measure the rank correlation of evaluation performance in each operation pair. Concretely, we
split the operation pairs on MB-SE search space into similar, dissimilar, and random set, the similar (dissimilar) set contains
10 pairs with highest (lowest) learned similarities, while the random set are built with randomly generated pairs. We first
measure the rank correlation of each pair independently, then report their mean correlation as the correlation of the set.
Specifically, for the measurement of the rank correlation of each pair, we randomly generate 100 paths containing the first
operation, then evaluate their performance of validation set on a trained supernet, resulting in performance vector x. For
another operation, we use it to replace the first operation in generated paths and obtain performance vector y. If these two
operations in a pair have similar performance, vectors x and y will obtain similar values for each element. We then use
Spearman’s [3] and Kenall’s Tau [7] rank correlation to measure this similarity in performance. Note that we use the supernet
learned by uniform sampling for fair evaluation without greedy biases.

As shown in Table 13, the learned similar pairs obtain very high similarities (rank correlations), indicating that our learned
similarity can well reflect the similarity in performance; therefore, we can confidently leverage the learned similarities to
merge operations.

Table 13. Rank correlations of the evaluation results of similar, dissimilar, and random pairs identified by the path filter on supernet.

Pairs Mean similarity
Rank correlation (%)

Spearman’s Kendall’s Tau
similar 0.9118 99.26 93.68

dissimilar -0.2183 73.38 69.58
random 0.3412 83.62 78.31



F. Visualization of our searched architectures

Our searched GreedyNASv2-S and GreedyNASv2-L are visualized in Figure 8.

ID

MB3_K5_SE

MB3_K3_SE

MB6_K7_SE

MB3_K7_SE

Shuffle_x

MB3_K3

MB6_MIX_SE

MB6_K5_SE

MB6_K3

MB6_MIX

MB3_K7

MB3_K3

Shuffle_7

MB3_K7_SE

ID

MB3_K3_SE

MB3_K7_SE

MB6_K5_SE

MB3_K5

MB6_K5_SE

(a) GreedyNASv2-S

ResNet_K3_0.5×

ResNet_K5_1×

ResNet_K3_0.5×

ResNet_K7_1×

ResNeXt_K3_0.5×

ResNet_K7_1×

ResNet_K3_1��×

ResNeXt_K5_1×

ResNeXt_K7_1×

ResNet_K5_1×

ResNeXt_K7_0.5×

ResNeXt_K3_1×

ResNeXt_K5_0.5×

ResNeXt_K3_0.5×

ResNeXt_K5_1��×

ResNet_K5_0.5×

(b) GreedyNASv2-L

Figure 8. Visualization of our searched architectures.



References
[1] Hui Chen, Fangqing Liu, Yin Wang, Liyue Zhao, and Hao Wu. A variational approach for learning from positive and unlabeled data.

In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 14844–14854. Curran Associates, Inc., 2020. 2

[2] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu,
Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jing-
dong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019. 3

[3] Yadolah Dodge. The concise encyclopedia of statistics. Springer Science & Business Media, 2008. 4
[4] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot neural architec-

ture search with uniform sampling. In European Conference on Computer Vision, pages 544–560. Springer, 2020. 1, 3
[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 770–778, 2016. 1
[6] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 7132–7141, 2018. 1
[7] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938. 4
[8] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object

detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2117–2125, 2017. 3
[9] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In Proceedings of

the IEEE international conference on computer vision, pages 2980–2988, 2017. 3
[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.

Microsoft coco: Common objects in context. In European conference on computer vision, pages 740–755. Springer, 2014. 3
[11] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient cnn architecture design.

In Proceedings of the European conference on computer vision (ECCV), pages 116–131, 2018. 1
[12] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and

linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018. 1
[13] Xiu Su, Tao Huang, Yanxi Li, Shan You, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. Prioritized architecture sampling

with monto-carlo tree search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10968–10977, 2021. 1

[14] Xiu Su, Shan You, Mingkai Zheng, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. K-shot NAS: learnable weight-sharing
for NAS with k-shot supernets. In ICML, volume 139 of Proceedings of Machine Learning Research, pages 9880–9890. PMLR,
2021. 1

[15] Mingxing Tan and Quoc V. Le. Mixconv: Mixed depthwise convolutional kernels. In BMVC, page 74. BMVA Press, 2019. 1
[16] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1492–1500, 2017. 1
[17] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen Qian, and Changshui Zhang. Greedynas: Towards fast one-shot nas with

greedy supernet. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1999–2008, 2020.
1, 3

[18] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In Interna-
tional Conference on Learning Representations, 2018. 2


	. Details of Search Spaces
	. Macro structures
	. Candidate operations

	. Implementing Details of PU Learning
	. Complete learning objective in VPU

	. Searching Results of Baseline NAS Methods on Res-50-SE Search Space
	. Transfer learning on object detection task
	. More Ablation Studies
	. Effects of path-level shrinkage and operation-level shrinkage
	. Effect of path filter in search
	. Effects of different operation merging thresholds
	. Validate the correctness of operation similarity

	. Visualization of our searched architectures

