Supplementary Materials for
GreedyNASv2: Greedier Search with a Greedy Path Filter

A. Details of Search Spaces
A.l. Macro structures

In this paper, we conduct experiments on two macro structures of supernet, as presented in Table 6 and Table 7. The
MobileNetV2 supernet is used for MB-SE, MB-SE+MixConv, and MB-SE+MixConv+shuffle search spaces, while the Res-
50-SE adopts the same structure as ResNet-50 [5] in Table 7.

Table 6. Macro structure of our MobileNetV?2 search space. input de-
notes the input feature size for each layer, channels means the output
channels of the layer, repeat denotes the repeat times of stacking the
same blocks, and stride is for the stride of first block when stacked

. . Table 7. Macro structure of our Res-50-SE search space.
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A.2. Candidate operations

The candidate operations in Choice Block of each supernet are summarized as follows.

e MB-SE. Following the previous NAS methods [13, 14, 17], we conduct the same searching operations in MB-SE search
space, which consists of 13 MobileNetV2 [12] blocks with optional SE [6] module, as summarized in Table 8.

e MB-SE+MixConv. We design a new MobileNetV2 search space with additional MixConv blocks [15], which aims to
mix the outputs of different kernel sizes (3 x 3,5 x 5, and 7 x 7) of depth-wise convolution in MobileNetV2 block.

o MB-SE+MixConv+Shuffle. To further validate our performance on a larger search space, we add the ShuffleNetV2 [11]
blocks in SPOS [4].

e Res-50-SE. We leverage the blocks in ResNet [5] and ResNeXt [16] to build our Res-50-SE search space, and all of
them are equipped with additional SE modules. We design blocks with different kernel sizes (3, 5, and 7), and a ratio is
used to control the intermediate number of channels, which has choices 0.5, 1.0, and 1.5, e.g., 0.5 means that the number
of intermediate channels is 0.5x compared to the original one. The total number of candidate operations is 19, with an
additional ID operation for layer removal.

The detailed settings of candidate operations are summarized in Table 8 and Table 9.



Table 8. Candidate operations in our mobile search spaces.

search space block type expansion ratio | kernel size | SE . . .
- MBLKS ] 3 o Table 9. Candidate operations in our Res-50-SE search space.
1D - - - block type basic block | ratio | kernel size | SE
MB3_K3 3 3 no ID - - - -

MB3_K5 3 5 no ResNet_K3_0.5x ResNet 0.5 3 yes

MB3_K7 3 7 no ResNet_K3_1x ResNet 1.0 3 yes

MB6.K3 6 3 no ResNet_K3_1.5x ResNet 1.5 3 yes

MB6_K5 6 5 no ResNet_K5_0.5x ResNet 0.5 5 yes

MB-SE MB6_K7 6 7 no ResNet_K5_1x ResNet 1.0 5 yes

MB3_K3_SE 3 3 yes ResNet_K5_1.5x% ResNet 1.5 5 yes

MB3_K5_SE 3 5 yes ResNet_K7_0.5x ResNet 0.5 7 yes

MB3_K7_SE 3 7 yes ResNet_K7_1x ResNet 1.0 7 yes

MB6_K3_SE 6 3 yes ResNet_K7_1.5x% ResNet 1.5 7 yes

MB6_K5_SE 6 5 yes ResNet_K3_1x ResNeXt 1.0 3 yes

MB6_K7_SE 6 7 yes ResNeXt_K3_1.5x ResNeXt 1.5 3 yes

MB3_MIX 3 3+5+7 no ResNeXt_K5_0.5x ResNeXt 0.5 5 yes

MixConv MB6_MIX 6 3+5+7 no ResNeXt_K5_1x ResNeXt 1.0 5 yes

MB3_MIX_SE 3 3+5+7 yes ResNeXt_K5_1.5% ResNeXt 1.5 5 yes

MB6_MIX_SE 6 34547 yes ResNeXt_K7.0.5x ResNeXt 0.5 7 yes

Shuffle_3 - 3 yes ResNeXt_K7_1 x ResNeXt 1.0 7 yes

Shuffie Shuffle_5 - 5 yes ResNeXt_K7_1.5x% ResNeXt 1.5 7 yes
Shuffle_7 - 7 yes
Shuffle_x - 3+3+3 | yes

B. Implementing Details of PU Learning

In the training of supernet, we train the path filter using VPU [1] every ¢ = 5 epoch. At the first time we train it, the
weights of the path filter are randomly initialized, then the following training fine-tunes the weights obtained in the previous
training.

B.1. Complete learning objective in VPU

The core idea of VPU is the proposed variational loss as in Eq.(6). Besides, to further alleviate the over-fitting problem,
VPU incorporates a MixUp [ 18] based consistency regularization term to the variational loss (Eq.(6)) as

Lieg(®) = Eg 4 [(log® — log®(a))?], (10)
with
~y i Beta(o, o),
a=v-a+(1—~)-d", (11)
=71+ (1-7) 2a")

Here a is an architecture generated by mixing randomly selected @’ € P and a”’ € U, and P represents the guessed
probability P(y = +1]|a = a) constructed by the linear interpolation of the true label and that predicted by ®, o is a hyper-
parameter to control the MixUp percentage. Unlike the original MixUp on images, our architecture vector a is a tuple of
discrete integers without semantic features, therefore, we conduct MixUp after the embedded features A, i.e.,

Ag :'Y'Aa’ +(17’y) < Agr. (12)
Complete form of loss function in VPU. The complete loss function to train our path filter is as below:
L(P) = Lyar(P) + ALreg (D). 13)

In our experiments, we set 0 = 0.3 and A = 0.2 following the original configurations in VPU.



C. Searching Results of Baseline NAS Methods on Res-50-SE Search Space

In this paper, we propose a new search space named Res-50-SE for searching ResNet-like models. Here we conduct
experiments to compare our method with baselines SPOS [4] and GreedyNAS [17]. As the results summarized in Table 10,
we can see that our GreedyNASv2-L obtains the highest accuracy with the minimal cost. Besides, for GreedyNAS, since
each architecture has ~ 4G FLOPs, the computation cost of multi-path sampling could be noticeably higher than the mobile
search spaces, and the training cost is larger than GreedyNASvV2 as a result.

Table 10. Evaluation results of Res-50-SE search space on ImageNet. The results of SPOS and GreedyNAS are obtained by our implemen-
tations.

Methods Top-1 Top-5 FLOPs Params Training Training cost Search

(%) (%) M) M) epochs (GPU days) number
SPOS [4] 80.6 95.1 4153 27.8 120 15.4 1000
GreedyNAS [17] 80.8 95.2 4125 28.1 49 11.3 1000
GreedyNASv2-L 81.1 95.4 4098 26.9 57 9 500

D. Transfer learning on object detection task

We transfer our searched models to verify the generalization performance on object detection task. Concretely, we train
both two-stage Faster R-CNN with Feature Pyramid Networks (FPN) [8] and one-stage RetinaNet [9] networks on COCO
dataset [10], and report the validation mAP in Table 11. Note that for fair comparisons, we train the networks using the
default configurations in mmdetection [2], with only modifications on backbone models. The results show that our obtained
models significantly outperform the baseline models.

Table 11. Evaluation results on COCO dataset.

ImageNet FPN RetinaNet
Backbone
Top-1 (%) mAP (%) mAP (%)
ResNet-50 76.1 374 36.5
GreedyNASv2-L 81.1 41.7 (+4.3) 40.9 (+4.4)
MobileNetV2 72.0 32.1 30.5
GreedyNASv2-S 71.5 35.4 (+3.3) 34.9 (+4.4)

E. More Ablation Studies
E.1. Effects of path-level shrinkage and operation-level shrinkage

To validate the effectiveness of the proposed path-level shrinkage and operation-level shrinkage methods, we conduct
experiments to ablate these two components in GreedyNASv2, as shown in Table 12.

Table 12. Effects of path-level and operation-level shrinkages on MB-SE+MixConv+Shuffle (large) search space.

Method Path-level shrinkage Operation-level shrinkage | ACC in retraining (%) ACC on supernet (%)
SPOS [4] - - 75.5 33.4
GreedyNAS [17] v - 76.5 35.1
GreedyNASv2 v v 71.5 43.8
GreedyNASv2 X v 76.8 42.1
GreedyNASv2 v X 77.2 39.6

E.2. Effect of path filter in search

In GreedyNASv2, we use the learned path filter to filter the predicted weak paths during the search. Now we conduct
experiments on MB-SE+MixConv+Shuffle search space to show the effectiveness of path filter in search. As the histogram of
searched accuracies shown in Figure 7 (a), searching with a path filter can reject a larger number of weak paths and obtain
higher accuracies, showing that the path filter can boost the searching efficiency.
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Figure 7. (a): Histogram of accuracies of searched paths on supernet with or without using path filter. (b): Supernet and retraining
accuracies of different operation merging thresholds. Specifically, the threshold of 1.0 denotes no merging.

E.3. Effects of different operation merging thresholds

In our operation-level shrinkage, the operation pair with a similarity large than a certain threshold would be treated as
similar pair; then, we will merge them into one operation and obtain a smaller search space as a result. Here we conduct
experiments to show the performance of different merging thresholds. We train the MB-SE+MixConv+Shuffle supernet
using GreedyNASv2 with merging thresholds 0.6, 0.7, 0.8, 0.9, and 1.0, respectively, and report the supernet and retraining
accuracies of the searched models in Figure 7 (b). We can see that the smaller threshold would have more operations being
merged, and thus the accuracy on supernet would be higher. However, too aggressive mergings (thresholds 0.6 and 0.7)
would hurt the diversity of the search space; therefore, the performance of searched models would worsen.

E.4. Validate the correctness of operation similarity

To validate the correlation between our learned operation similarities and their corresponding evaluation performance,
we conduct experiments to measure the rank correlation of evaluation performance in each operation pair. Concretely, we
split the operation pairs on MB-SE search space into similar, dissimilar, and random set, the similar (dissimilar) set contains
10 pairs with highest (lowest) learned similarities, while the random set are built with randomly generated pairs. We first
measure the rank correlation of each pair independently, then report their mean correlation as the correlation of the set.
Specifically, for the measurement of the rank correlation of each pair, we randomly generate 100 paths containing the first
operation, then evaluate their performance of validation set on a trained supernet, resulting in performance vector x. For
another operation, we use it to replace the first operation in generated paths and obtain performance vector y. If these two
operations in a pair have similar performance, vectors  and y will obtain similar values for each element. We then use
Spearman’s [3] and Kenall’s Tau [7] rank correlation to measure this similarity in performance. Note that we use the supernet
learned by uniform sampling for fair evaluation without greedy biases.

As shown in Table 13, the learned similar pairs obtain very high similarities (rank correlations), indicating that our learned
similarity can well reflect the similarity in performance; therefore, we can confidently leverage the learned similarities to
merge operations.

Table 13. Rank correlations of the evaluation results of similar, dissimilar, and random pairs identified by the path filter on supernet.

Rank correlation (%)

Pairs Mean similarity
Spearman’s Kendall’s Tau
similar 09118 99.26 93.68
dissimilar -0.2183 73.38 69.58
random 0.3412 83.62 78.31




F. Visualization of our searched architectures

Our searched GreedyNASv2-S and GreedyNASv2-L are visualized in Figure 8.
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Figure 8. Visualization of our searched architectures.
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