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1. Baseline Implementations

We implement some of the baseline methods, which are
marked with ∗ in the main paper. For fair comparison, all
the re-implemented methods use the same feature extractor
(ResNet12) as ours, which is first pre-trained on the base
set.

Dynamic: Our ATT-G and SEMAN-G negative genera-
tors are built upon Dynamic [10]. Dynamic [10] calibrates
few-shot prototypes using base class classifier. We re-
implemented Dynamic using the standard Transformer at-
tention block. We compare this baseline in Tab. 3 in the
main paper for GFSOR performance (i.e., DynamicFSL) ,
where we calculate its accuracy in the normal way, while
for AUROC, we take argmaxy∈ Cf∪C∗p(x|y) as the rejec-
tion score. We also evaluate its performance on CIFAR-FS
and FC-100 in Tab. 6, where we take argmaxy∈ Cf p(x|y)
as the rejection score.

PEELER: Our training and sampling strategy are built
upon PEELER [24], and hence pick it as one threshold-
based method for comparison in Fig. 3 and Tab. 1.
In detail, we implement PEELER using our pre-trained
feature extractor, and then perform meta-training with
PEELER’s open-set loss. Then rejection score is calculated
as argmaxy∈ Cf p(x|y).
Dynamic+PEELER. To compare to ATT-G more fairly,
we combine PEELER with Dynamic as another threshold-
based approach in Fig. 3 and Tab. 1. Specifically, we use
PEELER’s loss and training strategy on top of the calibrated
few-shot prototypes. Then the rejection score is calculated
as argmaxy∈ Cf p(x|y).
CounterFactual. CounterFactual [27] is a generative open-
set recognition method. To apply in our FSOR setting, we
first train the GAN network on base set and use the support
set S to synthesize fake images. The averaged fake image
feature is used as the negative prototype for open-set recog-
nition.

OpenMax [1]. For experiments on CIFAR-FS and FC100,
we follow [20] to fit Weibull models over training tasks us-
ing the predicted class scores (i.e., logits). Then the mean
activation vectors are used for negative detection.

2. Dataset Descriptions

For the brevity of description, we follow the order {
base, novel (validation), novel (testing) } to describe the
class splits. The base class split is for training the few-
shot model. We use the novel (validation) class split for
model selection, and report the evaluation results on the
novel (testing) class split.
MiniImageNet [43] and TieredImageNet [33] are two
subsets of ImageNet-1k [4]. MiniImageNet contains 100
object classes and each class contains 600 images. The 100
classes are split into (64, 16, 20). TieredImageNet con-
tains the full set of 608 object classes. The 608 classes
are split into (351, 97, 160). All the images are resized
to 84×84. TieredImageNet offers more challenging class
splits than MiniImageNet that are based on object class hi-
erarchy. In our experiment, we use both datasets to evaluate
FSOR tasks, and use MiniImageNet to additionally evaluate
GFSOR tasks. Specifically, MiniImageNet offers additional
300 base-class images for testing. For GFSOR evaluation,
we use this base-class test split to sample base-class positive
queries.
CIFAR-FS [2] and FC100 [29] are two different splits
of CIFAR100 [?] with 100 object classes and each class
has 600 images. The images are at a resolution of 32 ×
32. CIFAR-FS [2] has the class splits (64,16,20), while
FC100 [29] has the class splits (60,20,20). In particular,
FC100 offers more challenging class splits that are based
on object class hierarchy. We use both datasets to further
evaluate FSOR tasks.

3. Figure Details

For Fig. 1, we sample two tasks from MiniImageNet.
Within each task, we sample three few-shot classes and se-
lect one training sample to estimate class prototype for each
class. We then select another three classes whose samples
are used as negative queries in both tasks. In Fig. 1(up), for
each class, we calculate the cosine similarity score as de-
tection score between the class prototype and all of its pos-
itive queries. The mean and standard deviation of detection
scores are represented by the height of bar and half length
of black line respectively. Similarly, we calculate the cosine
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Table S1. Summary of Symbol Notation

Variable Definition Note

T a few-shot open-set recognition task

T ∗ a generalized few-shot open-set recognition task

Cf the set of few-shot classes

C∗ the set of many-shot classes

Cn the set of negative classes (simulate unknown sources)

CB/CN base/novel class set class split in experiment

DB/DN base/novel class dataset dataset split in experiment

S training samples (support) set of few-shot classes

Sc training samples (support) set of few-shot class c (character sub-index)

Qf /Q∗/Qn testing samples (query) set of few-shot/many-shot/negative classes

Pf few-shot prototype vectors (average the support feature vectors)

P∗ many-shot prototype vectors (classifier weights after pretraining)

Zf /Z∗ semantic-visual vectors for few/many-shot classes

pc a prototype feature of class c

p− a negative prototype feature

ec word embedding (semantic representation) of class c

zc semantic-visual vector for class c concatenate pc and ec

Kq,Kk,Kv learnable kernels for attention calculation

A((x,y)) the unnormalized attention weights between x and y

s a support sample

q a query sample its label is yq
f feature extractor function, extract one feature vector for each image

fs distance function, calculate similarity between two feature vectors

fn an MLP for negative prototype generation

fg gating function used in ATT-G and SEMAN-G

gn general representation for the negative prototype generation function gn,i the i-th function

θm manual threshold for negative query detection

θa automatic/task-adaptive threshold θa,i the i-th threshold

τ a margin between rejection score and positive detection scores the margin value is positive

⊙ element-wise multiplication

ϕ element-wise sigmoid operation

σ row-wise softmax operation

Note: the numerical sub-index used in the paper is for the definition of conjugate tasks and their related calculation

similarity between the prototype and all negative queries,
and calculate the mean and standard deviation. Within Fig.
1(down), for each subplot, we plot a circle centered at a
negative query and the negative query will be classified as a

positive class if a few-shot class prototype is in the circle.



Table S2. 5-way FSOR results CIFAR-FS. ∗: our implementation.

Algorithm 1-shot 5-shot
Acc AUROC Acc AUROC

OpenMax [1]∗ 71.65±0.65 50.21±0.07 85.66±0.48 75.78±0.47

CounterFactural [27]∗ 71.71±0.65 72.57±0.61 85.71±0.45 80.44±0.37

PEELER [24]∗ 71.47±0.67 71.28±0.57 85.46±0.47 75.97±0.33

Dynamic [10]∗ 71.56±0.67 66.89±0.52 85.78±0.49 76.03±0.37

ATT-G (ours) 72.43±0.65 76.72±0.59 86.52±0.49 84.64±0.38

SEMAN-G (ours) 74.55±0.65 78.10±0.58 86.71±0.47 86.47±0.37

Table S3. 5-way FSOR results on FC100. ∗: our implementation.

Algorithm 1-shot 5-shot
Acc AUROC Acc AUROC

OpenMax [1]∗ 44.70±0.60 50.10±0.11 60.11±0.62 57.78±0.44

CounterFactural [27]∗ 44.53±0.60 57.20±0.47 61.12±0.60 62.35±0.45

PEELER [24]∗ 44.45±0.57 55.86±0.44 60.86±0.59 61.07±0.40

Dynamic [10]∗ 44.88±0.59 55.62±0.54 60.45±0.61 59.01±0.52

ATT-G (ours) 45.11±0.60 59.55±0.57 61.18±0.61 63.34±0.50

SEMAN-G (ours) 46.01±0.60 59.73±0.53 62.18±0.57 64.46±0.50

4. Terminology & Symbol Summary
Throughout the paper explanation, we interchangeably

use the terms unknown and negative, known and positive.
The unknown source is simulated by selecting negative
classes.

During meta-training, we build a FSOR task by sam-
pling Cf and Cn from CB where Cn ∩ Cf = ∅. To build
a GFSOR task, we split the CB into Cf , Cn and C∗, e.g., on
MiniImagenet, to sample a 5-way GFSOR task T ∗, we have
|C∗| = 54 while |Cn| = |Cf | = 5.

During meta-testing, we sample Cf and Cn from novel
classes CN where CN ∩ CB = ∅. As such, we use CB as
C∗ and thus interchangeably use the term base classes and
many-shot classes.

We summarize the symbols in Table. S1.

5. More Experiments
We extend Table 5&6 in the main paper and provide the

full results on CIFAR-FS and FC100 in Table S2&S3 re-
spectively.
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