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A. Implementation Details
Let us describe how to configure training data for SIIC-Net. Then, we present the training process and the architecture of

SIIC-Net in more detail.

A.1. Data configuration

SI module: Let l̄ and c̄ denote a ground-truth lane and its coefficient vector in the eigenlane space. For a lane candidate li,
the l1-distance di = ‖li − l̄‖1 is computed from the ground-truth l̄ . If the distance is lower than a threshold, it is declared as
a positive lane. In such a case, the probability P̄i is annotated to be proportional to e−d2

i , and the offset vector Ōi is annotated
to be c̄ − ci, respectively. Also, let H = {h1, h2, . . . , he} denote the set of height classes of lanes, which are obtained by
clustering the y-coordinates of the ending points of all training lanes. Then, the height probability H̄i is annotated as one-hot
vector, in which the jth element is set to 1 if hj is the closest one to the ending point of l̄.
IC module: For an index set of lane candidates S = {s1, s2, . . . , sT }, a ground-truth relation matrix R of size T × T
should be generated to train the IC module. To compose the index set S, each element can be selected randomly from [1,K].
However, this approach fails to train the IC module reliably due to many redundant negative lane candidates. To overcome
this issue, we construct S by exploiting the NMS output, which informs of the top T reliable lanes. Specifically, for each
ground-truth lane, a positive lane candidate becomes an element in S. Then, randomly selected lanes from the NMS output
become the remaining ones in S. The relation score R̄(i, j) is annotated as (P̄si + P̄sj )/2 if two candidates are positive lanes
corresponding to different ground-truth ones, where P̄si is the ground-truth probability for lane candidate lsi . Otherwise,
R̄(i, j) is annotated to be zero.

A.2. Training details

We define the loss for training the SI module as

`SI = `cls(Pi, P̄i) + `cls(Hi, H̄i) + `reg(Oi, Ōi), (1)

where Pi, Hi, Oi are the output of the SI module, corresponding to the annotations P̄i, H̄i, Ōi, respectively. Also, `cls is the
focal loss over the classes, and `reg is the mean squared error (MSE). The loss function for training the IC module is defined
as `IC = ‖R− R̄‖2F between the estimated relation matrix R and the ground-truth R̄. Finally, to train the decoder, the cross
entropy loss [25] is used.

We use the Adam optimizer with an initial learning rate of 10−5 and halve it after every 30 epochs five times. Also, we
use a batch size of four for 400,000 iterations and augment training images by randomly flipping them horizontally. For the
TuSimple, CULane, and SDLane datasets, we resize training images to 384× 640, 384× 800, and 384× 640, respectively.
We will make the source codes publicly available.

A.3. Network details

SIIC-Net consists of encoder-decoder part, SI module, and IC module. Based on ResNet50 [9], we implement the encoder,
which extracts an aggregated feature map Xa of size H ×W × 384 and a squeezed feature map Xs of size H ×W × 128.
We also employ the auxiliary branch [25] to design the decoder to produce a binary segmentation map of size H ×W × 1.
The number R of pre-defined heights is 2 and the number M of eigenlanes is 4 in all tests. Thus, in the SI module, the size of
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the last fully-connected layers of the height classification layer and the regression layer are 128×2 and 128×4, respectively.
In the IC module, we halve the number of channels of a lane feature map Ya of size 10 × 384 by employing the feature
transforms φ1 and φ2 in Eq. (12) in the main paper, which contain a series of 1D convolution layers and ReLU activation
functions. Then, φ1(Ya) and φ2(Ya) of size 10 × 192 are l2-normalized, respectively. Also, in the default mode, K = 500
and T = 10.

B. Dataset Analysis
We analyze and compare four lane detection datasets: TuSimple [1], CULane [22], CurveLanes [33], and SDLane. Except

for CurveLanes, the three datasets are described in Section 4.1. CurveLanes is the largest lane detection dataset, consisting
of 100K training, 20K validation, 30K testing images, but the annotations for test images are not publicly available yet.

B.1. Eigenlanes - Image Examples

As in Section 3.2, we construct the eigenlane spaces for the four lane detection datasets. Figure 1 shows the first six
eigenlanes u1,u2, . . . ,u6 for each dataset in the image space. For TuSimple and SDLane, u1 is a straight line and u2 is
slightly curved at the top side (far from the cameras). For CULane and CurveLanes, the two eigenlanes are straight lines with
different slopes. As m increases, um represents a more complicated curve. While the eigenlanes for TuSimple exhibit high
fluctuations at the top side, those for the other datasets oscillate more regularly. This indicates the differences in curved lane
distributions among the four datasets.
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(a) TuSimple (b) CULane (c) CurveLanes (d) SDLane

Figure 1. The first six eigenlanes u1,u2, . . . ,u6 for the four lane detection datasets.

B.2. Structural diversity

The four lane detection datasets have different characteristics. We analyze the structural diversity of lanes within each
dataset. Let A = [x1, · · · ,xL] be a dataset and AM = [x̃1, · · · , x̃L] be its rank-M approximation in Eq. (2) in the main
paper. Then, we define the error-to-signal (E2S) ratio of the rank-M approximation as

E2S(M) =
‖A−AM‖2F
‖A‖2F

=

∑L
i=1 ‖xi − x̃i‖2∑L

i=1 ‖xi‖2

= 1−
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i=1 σ
2
i∑r

i=1 σ
2
i

(2)

where the last equality holds because of Eq. (3) in the main paper. Figure 2 plots the E2S graph of each dataset. E2S
approaches zero quickly as M gets higher.

For CULane and CurveLanes, E2S tends to decrease similarly before M = 4. Especially, the scores drop significantly
between M = 1 and M = 2. It means that two eigenlanes are enough to represent most lanes in CULane and CurveLanes,
which are straight ones. Note that both u1 and u2 are straight lines as shown in Figure 1 (b) and (c). Also, even though some
lanes in the ‘Curve’ category in CULane have high curvatures, there are too few such curved lanes. Even though over 90%
of images contain curved lanes in CurveLanes, those lanes are slightly curved near the ending points. For TuSimple, E2S(2)
is higher than CurveLanes, but E2S(4) is the lowest. This means that it contains curved lanes whose shapes are simple and
similar to one another. Finally, SDLane yields significantly higher E2S ratios than other datasets after M = 1. In other
words, among the four datasets, the proposed SDLane is the most diverse one.
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Figure 2. The E2S graphs of the benchmark lane detection datasets according to the number M of eigenlanes. The y-axis is in a logarithmic
scale.

B.3. More details on SDLane

Let us describe the proposed SDLane dataset in more detail. We collected 45K road images with a high resolution of
1208× 1920 in several cities in Korea, such as Seoul, Seongnam, Gwacheon, and Hwaseong. In an image, there are up to 7
road lanes, and the lanes in the opposite direction are excluded. Each lane is annotated by a series of 2D points.

Table 1. The distribution of lanes according to the maximal curvatures in the SDLane dataset.

Curvature 0◦ ∼ 10◦ 11◦ ∼ 20◦ 21◦ ∼ 30◦ 31◦ ∼ 45◦ 46◦ ∼ 89◦

Percentage (%) 38.7 17.8 11.9 9.6 22.0

We analyze the lane distribution of the SDLane dataset in terms of curvatures. We divide each lane into line segments.
Then, we measure the maximal curvature, which is the maximum angle between adjacent segments. Table 1 reports the
percentage of lanes in SDLane that have maximal curvatures in the five ranges: 0◦ ∼ 10◦, 11◦ ∼ 20◦, 21◦ ∼ 30◦, 31◦ ∼ 45◦,
and 46◦ ∼ 89◦. About 40% of lanes are in the range of 0◦ ∼ 10◦, which are almost straight ones. On the other hand, over
40% have maximal curvatures higher than 20◦. It means that SDLane contains more curved lanes than straight ones.

In Figure 3, the images are grouped according to the maximum of the maximal curvatures of all lanes in an image. Note
that, in 0◦ ∼ 10◦, lanes are straight or slightly curved. As the curvatures get higher, lanes are more curved. Especially, in
45◦ ∼ 89◦, some lanes for left or right turns are highly curved and implicit.
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Figure 3. Example images with the ground-truth lanes in the SDLane dataset, according to the maximal curvature of all lanes in an image.



C. Experimental Results
C.1. More examples of lane detection by SIIC-Net

Figure 4 illustrates how the proposed SIIC-Net detects lanes.

(a) (b) (c) (d) (a) (b) (c) (d)

Figure 4. Lane detection examples by SIIC-Net: (a) input image, (b) 10 selected lanes after NMS, (c) optimal lanes determined by MWCS,
and (d) refined lanes using the regression offsets from the SI module.

C.2. More detection results on TuSimple

The proposed algorithm detects even curved or occluded lanes precisely, except for too short lanes far from the cameras.

Figure 5. Detection results of the proposed algorithm on the TuSimple dataset. Detected lanes are depicted in green, while false negatives
are in red.



C.3. Comparison on CULane

Figure 6 compares the proposed algorithm with the conventional road lane detectors [22, 25, 34] on the CULane dataset.
Since the conventional detectors are based on the segmentation framework, they cannot preserve the continuous lane structure
in detection results. Also, they poorly recall highly implied lanes or fail to localize each lane precisely. In contrast, the
proposed algorithm detects lanes reliably.
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Figure 6. Comparison of lane detection results on the CULane dataset.



C.4. Comparison on SDLane

Figure 7 compares the proposed algorithm with [19, 30, 34], which are the state-of-the-art lane detectors. LaneATT [30]
is an anchor-based detector that considers straight lines as anchors, while RESA [34] is based on the semantic segmentation
framework. Recently, CondLaneNet [19] was proposed, yielding an F-measure of 79.48% on CULane. LaneATT fails to
detect highly curved lanes. RESA detects such curved lanes better than LaneATT does. However, for invisible lanes, it does
not preserve their structures faithfully. CondLaneNet extracts some lanes precisely but fails to detect highly implied lanes.
In contrast, the proposed algorithm detects both straight and curved lanes precisely and reliably, by generating structurally
diverse lane candidates and then localizing lanes effectively in the eigenlane space.
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Figure 7. Comparison of lane detection results on the SDLane dataset.


