A. Details of σ_{l} and other $\Phi^{\text {adv }}$

Assumption of σ_{l} in [25]. To prove Eq. (2) according to Theorem 1.5 in [76], [25] considers $f_{\widetilde{\mathbf{W}}}$ such that $\left\|\mathbf{W}_{l}\right\|_{2}-$ $\left|\left|\widetilde{\mathbf{W}_{l}}\left\|_{2} \left\lvert\, \leq \frac{1}{n}\right.\right\| \widetilde{\mathbf{W}_{l}} \|_{2}\right.\right.$, then they assume $\sigma_{l}=\frac{\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}}{\beta_{\mathbf{w}_{l}}} \sigma$, where $\beta_{\widetilde{\mathbf{W}_{l}}}:=\left(\prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}\right)^{\frac{1}{n}}$.

Assumption of σ_{l} in [54]. To prove the PAC-Bayesian bound in [54] according to Theorem 1.5 in [76], [54] assumes all variances are same across layers, that is, $\sigma_{l}=\sigma$.

Our assumption of σ_{l}. We can prove Lem. 3.2 under both of above assumptions. To make the main paper more clear, we assume that $\sigma_{l}=\sigma$ in the main paper. And we provide the proofs of Lem. 3.2 for $\sigma_{l}=\sigma$ and $\sigma_{l}=\frac{\left\|\widehat{\mathbf{W}_{l}}\right\|_{2}}{\beta_{\widehat{\mathbf{W}_{l}}}} \sigma$ in Appendix B (the assumption of $\sigma_{l}=\frac{\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}}{\beta_{\overline{\mathbf{w}_{l}}}} \sigma$ includes the assumption of $\sigma_{l}=\sigma$).

PGM attack for $\Phi^{\text {adv }}$. For a PGM attack with noise power ϵ given Euclidean norm $\|\cdot\|, r$ iterations for attack and step size \mathcal{Z}, let $\kappa \leq\left\|\nabla_{\mathbf{s}^{\prime \prime}} \mathcal{L}\left(f_{\mathbf{W}}\left(\mathbf{s}^{\prime \prime}\right)\right)\right\|$ hold for every $\mathrm{s}^{\prime \prime} \in\left\{\mathcal{D} \cup \mathcal{D}^{\prime}\right\}$ with constant $\kappa>0$, then we get [25]

$$
\begin{align*}
& \Phi^{\text {adv }}=\left\{\prod _ { l = 1 } ^ { n } \| \mathbf { W } _ { l } \| _ { 2 } \left(1+\frac{\mathcal{Z}}{\kappa} \frac{1-(2 \mathcal{Z} / \kappa)^{r} \overline{\operatorname{lip}}\left(\nabla \mathcal{L} \circ f_{\mathbf{W}}\right)^{r}}{1-(2 \mathcal{Z} / \kappa) \overline{\overline{\operatorname{li}}\left(\nabla \mathcal{L} \circ f_{\mathbf{W}}\right)}}\right.\right. \\
& \left.\left.\left(\prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2}\right) \sum_{l=1}^{n} \prod_{j=1}^{l}\left\|\mathbf{W}_{j}\right\|_{2}\right)\right\}^{2} \sum_{l=1}^{n} \frac{\left\|\mathbf{W}_{l}\right\|_{F}^{2}}{\left\|\mathbf{W}_{l}\right\|_{2}^{2}}, \tag{22}
\end{align*}
$$

where

$$
\overline{\operatorname{lip}}\left(\nabla \mathcal{L} \circ f_{\mathbf{W}}\right):=\left(\prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2}\right) \sum_{l=1}^{n} \prod_{j=1}^{l}\left\|\mathbf{W}_{j}\right\|_{2}
$$

gives an upper bound on the Lipschitz constant of $\nabla_{\mathbf{s}} \mathcal{L}\left(f_{\mathrm{W}}(\mathbf{s})\right)$.

B. Proof of Lem. 3.2

We provide our proofs based on the proofs in [25], to be clearer about the proofs, we suggest readers go through Appendix C. 2 in [25] firstly. To prove Eq. (2), [25] considers $f_{\widetilde{\mathbf{W}}}$ such that $\left|\left|\left|\mathbf{W}_{l}\left\|_{2}-\right\| \widetilde{\mathbf{W}_{l}}\left\|\left._{2}\left|\leq \frac{1}{n}\right| \right\rvert\, \widetilde{\mathbf{W}_{l}}\right\|_{2}\right.\right.\right.$, since $\left(1+\frac{1}{n}\right)^{n} \leq e$ and $\frac{1}{e} \leq\left(1-\frac{1}{n}\right)^{n-1}$, we get

$$
\begin{equation*}
\left(\frac{1}{e}\right)^{\frac{n}{n-1}} \prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2} \leq \prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2} \leq e \prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2} \tag{23}
\end{equation*}
$$

and for each j, we get

$$
\begin{equation*}
\frac{1}{\left\|\mathbf{W}_{j}\right\|_{2}} \prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2} \leq \frac{e}{\left\|\widetilde{\mathbf{W}_{j}}\right\|_{2}} \prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2} \tag{24}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{1}{\left\|\widetilde{\mathbf{W}_{j}}\right\|_{2}} \prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2} & \leq\left(1-\frac{1}{n}\right)^{-(n-1)} \frac{1}{\left\|\mathbf{W}_{j}\right\|_{2}} \prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2} \\
& \leq \frac{e}{\left\|\mathbf{W}_{j}\right\|_{2}} \prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2} \tag{25}
\end{align*}
$$

Then let $\sigma_{l}=\sigma\left(\frac{\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}}{\beta_{\overline{\mathbf{w}_{l}}}}=1\right)$ or $\sigma_{l}=\frac{\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}}{\beta_{\overline{\mathbf{w}_{l}}}} \sigma$ and let FGM perturbs vector be

$$
\begin{equation*}
\delta_{\mathbf{W}}^{\mathrm{fgm}}(\mathbf{s}):=\underset{\|\boldsymbol{\delta}\| \leq \epsilon}{\arg \max } \boldsymbol{\delta}^{\top} \nabla_{\mathbf{s}} \mathcal{L}\left(f_{\mathbf{W}}(\mathbf{s})\right) . \tag{26}
\end{equation*}
$$

According to Appendix C. 2 Eq. (22) in [25], we get the following inequation

$$
\begin{align*}
& \left\|f_{\mathbf{W}+\mathbf{U}}\left(\mathbf{s}+\delta_{\mathbf{W}+\mathbf{U}}^{\mathrm{fgm}}(\mathbf{s})\right)-f_{\mathbf{W}}\left(\mathbf{s}+\delta_{\mathbf{W}}^{\mathrm{fgm}}(\mathbf{s})\right)\right\| \\
& \leq e(B+\epsilon) \prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2} \sum_{l=1}^{n} \frac{\left\|\mathbf{U}_{l}\right\|_{2}}{\left\|\mathbf{W}_{l}\right\|_{2}} \\
& \quad+2 e^{2} \frac{\epsilon}{\kappa} \prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2}^{2} \sum_{l=1}^{n}\left[\frac{\left\|\mathbf{U}_{l}\right\|_{2}}{\left\|\mathbf{W}_{l}\right\|_{2}}\right. \tag{27}\\
& \left.\quad+B\left(\prod_{j=1}^{l}\left\|\mathbf{W}_{j}\right\|_{2}\right) \sum_{j=1}^{l} \frac{\left\|\mathbf{U}_{j}\right\|_{2}}{\left\|\mathbf{W}_{j}\right\|_{2}}\right] .
\end{align*}
$$

According to Section 1.1 in [5], we have

$$
\begin{gathered}
\mathbb{E}\left\|\mathbf{U}_{l}\right\|_{2} \lesssim(1+\sqrt{\ln h})\left\|\mathbb{E}\left(\mathbf{U}_{l}^{\top} \mathbf{U}_{l}\right)\right\|_{2}^{\frac{1}{2}}+\left\|\mathbb{E}\left(\mathbf{U}_{l} \mathbf{U}_{l}^{\top}\right)\right\|_{2}^{\frac{1}{2}} \\
\leq c\left((1+\sqrt{\ln h})\left\|\mathbb{E}\left(\mathbf{U}_{l}^{\top} \mathbf{U}_{l}\right)\right\|_{2}^{\frac{1}{2}}+\left\|\mathbb{E}\left(\mathbf{U}_{l} \mathbf{U}_{l}^{\top}\right)\right\|_{2}^{\frac{1}{2}}\right), \\
\mathbb{P}\left(\left|\left\|\mathbf{U}_{l}\right\|_{2}-\mathbb{E}\left\|\mathbf{U}_{l}\right\|_{2}\right| \geq t\right) \leq 2 e^{-t^{2} / 2 \sigma_{*}\left(\mathbf{U}_{l}\right)^{2}}, \\
\sigma_{*}\left(\mathbf{U}_{l}\right) \leq\left\|\mathbb{E}\left(\mathbf{U}_{l}^{\top} \mathbf{U}_{l}\right)\right\|_{2}^{\frac{1}{2}},
\end{gathered}
$$

where $c>0$ is a universal constant. Taking a union bond over the layers, we get that, with probability $>\frac{1}{2}$, the spectral norm of \mathbf{U}_{l} is bounded by $(\sqrt{2 \ln (4 n)}+$ $c+c \sqrt{\ln h}) \left.\left\|\mathbb{E}\left(\mathbf{U}_{l}^{\top} \mathbf{U}_{l}\right)\right\|_{2}^{\frac{1}{2}}+c \right\rvert\,\left\|\mathbb{E}\left(\mathbf{U}_{l} \mathbf{U}_{l}^{\top}\right)\right\|_{2}^{\frac{1}{2}}$, let $c_{1}=$ $\sqrt{2 \ln (4 n)}+c+c \sqrt{\ln h}$ and $c_{2}=c$, we have

$$
\begin{equation*}
\left\|\mathbf{U}_{l}\right\|_{2} \leq\left(c_{1}\left\|\mathbf{R}_{l}^{\prime}\right\|_{2}^{\frac{1}{2}}+c_{2}\left\|\mathbf{R}_{l}^{\prime \prime}\right\|_{2}^{\frac{1}{2}}\right) \sigma_{l} . \tag{28}
\end{equation*}
$$

Thus, $\frac{\beta_{\overline{\mathbf{W}_{l}}}}{\left\|\widetilde{\mathbf{W}}_{l}\right\|_{2}}\left\|\mathbf{U}_{l}\right\|_{2}$ is bounded by $\left(c_{1}\left\|\mathbf{R}_{l}^{\prime}\right\|_{2}^{\frac{1}{2}}+\right.$ $\left.c_{2}\left\|\mathbf{R}_{l}^{\prime \prime}\right\|_{2}^{\frac{1}{2}}\right) \sigma$. Then, according to Appendix C. 2 Eq.
(22) in [25], Eqs. (24) and (27), we can get

$$
\begin{aligned}
& \left\|f_{\mathbf{W}+\mathbf{U}}\left(\mathbf{s}+\delta_{\mathbf{W}+\mathbf{U}}^{\mathrm{fgm}}(\mathbf{s})\right)-f_{\mathbf{W}}\left(\mathbf{s}+\delta_{\mathbf{W}}^{\mathrm{fgm}}(\mathbf{s})\right)\right\| \\
& \leq e^{2}(B+\epsilon) \prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2} \sum_{l=1}^{n} \frac{\left\|\mathbf{U}_{l}\right\|_{2}}{\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}} \\
& \quad+2 e^{5} \frac{\epsilon}{\kappa} \prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}^{2} \sum_{l=1}^{n}\left[\frac{\left\|\mathbf{U}_{l}\right\|_{2}}{\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}}\right. \\
& \left.\quad+B\left(\prod_{j=1}^{l}\left\|\widetilde{\mathbf{W}_{j}}\right\|_{2}\right) \sum_{j=1}^{l} \frac{\left\|\mathbf{U}_{j}\right\|_{2}}{\left\|\widetilde{\mathbf{W}}_{j}\right\|_{2}}\right] \\
& \leq 2 e^{5}(B+\epsilon) \sigma\left(\sum_{l=1}^{n}\left(c_{1}\left\|\mathbf{R}_{l}^{\prime}\right\|_{2}^{\frac{1}{2}}+c_{2}\left\|\mathbf{R}_{l}^{\prime \prime}\right\|_{2}^{\frac{1}{2}}\right)\right) \\
& \left\{\prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}^{\frac{n-1}{n}}+\frac{\epsilon}{\kappa}\left(\prod_{l=1}^{n} \| \widetilde{\mathbf{W}_{l} \|_{2}^{2 n-1}}{ }^{\frac{2}{n}}\right)\left(\frac{1}{B}+\sum_{l=1}^{n} \prod_{j=1}^{l}\left\|\widetilde{\mathbf{W}_{j}}\right\|_{2}\right)\right\} \\
& \leq \frac{\gamma}{4},
\end{aligned}
$$

hence we choose

$$
\begin{align*}
& \sigma=\frac{\gamma}{8 e^{5}(B+\epsilon)\left(\sum_{l=1}^{n}\left(c_{1}\left\|\mathbf{R}_{l}^{\prime}\right\|_{2}^{\frac{1}{2}}+c_{2}\left\|\mathbf{R}_{l}^{\prime \prime}\right\|_{2}^{\frac{1}{2}}\right)\right) \prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}^{\frac{n-1}{n}}} \\
& \cdot \frac{1}{\left(1+\frac{\epsilon}{\kappa} \prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}\left(\frac{1}{B}+\sum_{l=1}^{n} \prod_{j=1}^{l}\left\|\widetilde{\mathbf{W}_{j}}\right\|_{2}\right)\right)} \tag{29}
\end{align*}
$$

Then we can get

$$
\begin{align*}
& \mathrm{KL}\left(Q_{\mathrm{vec}(\mathbf{W})+\mathbf{u}} \| P\right)=\sum_{l=1}^{n}\left(\frac{\left\|\mathbf{W}_{l}\right\|_{F}^{2}}{2 \sigma_{l}^{2}}-\ln \operatorname{det} \mathbf{R}_{l}\right) \\
& \leq \mathcal{O}\left((B+\epsilon)^{2}\left(\sum_{l=1}^{n}\left(c_{1}\left\|\mathbf{R}_{l}^{\prime}\right\|_{2}^{\frac{1}{2}}+c_{2}\left\|\mathbf{R}_{l}^{\prime \prime}\right\|_{2}^{\frac{1}{2}}\right)\right)^{2} \prod_{l=1}^{n}\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}^{2}\right. \\
& \frac{\left(1+\frac{\epsilon}{\kappa} \prod_{l=1}^{n} \| \widetilde{\left.\mathbf{W}_{l}\left\|_{2} \sum_{l=1}^{n} \prod_{j=1}^{l}\right\| \widetilde{\mathbf{W}_{j}} \|_{2}\right)^{2}} \gamma^{2} \sum_{l=1}^{n} \frac{\left\|\mathbf{W}_{l}\right\|_{F}^{2}}{\left\|\widetilde{\mathbf{W}_{l}}\right\|_{2}^{2}}\right.}{\left.-\sum_{l=1}^{n} \ln \operatorname{det} \mathbf{R}_{l}\right)} \\
& \leq \mathcal{O}\left((B+\epsilon)^{2}\left(\sum_{l=1}^{n}\left(c_{1}\left\|\mathbf{R}_{l}^{\prime}\right\|_{2}^{\frac{1}{2}}+c_{2}\left\|\mathbf{R}_{l}^{\prime \prime}\right\|_{2}^{\frac{1}{2}}\right)\right)^{2} \prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2}^{2}\right. \\
& \frac{\left(1+\frac{\epsilon}{\kappa} \prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2} \sum_{l=1}^{n} \prod_{j=1}^{l}\left\|\mathbf{W}_{j}\right\|_{2}\right)^{2}}{\gamma^{2}} \sum_{l=1}^{n} \frac{\left\|\mathbf{W}_{l}\right\|_{F}^{2}}{\left\|\mathbf{W}_{l}\right\|_{2}^{2}} \\
& \left.-\sum_{l=1}^{n} \ln \operatorname{det} \mathbf{R}_{l}\right) .
\end{align*}
$$

Thus, we have

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{D}^{\prime}}\left(f_{\mathbf{W}}\right) \leq \mathcal{L}_{\gamma, \mathcal{S}^{\prime}}\left(f_{\mathbf{W}}\right)+\mathcal{O}\left(\left(\frac{-\sum_{l} \ln \operatorname{det} \mathbf{R}_{l}+\ln \frac{m}{\delta}}{\gamma^{2} m}\right.\right. \\
& \left.\left.+\frac{\Psi^{\mathrm{adv}}\left(\sum_{l}\left(c_{1}\left\|\mathbf{R}_{l}^{\prime}\right\|_{2}^{\frac{1}{2}}+c_{2}\left\|\mathbf{R}_{l}^{\prime \prime}\right\|_{2}^{\frac{1}{2}}\right)\right)^{2}}{\gamma^{2} m}\right)^{\frac{1}{2}}\right),
\end{aligned}
$$

where $\Psi^{\text {adv }}=(B+\epsilon)^{2} \Phi^{\text {adv }}$. And

$$
\begin{align*}
\Phi^{\mathrm{adv}}= & \prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2}^{2}\left\{1+\frac{\epsilon}{\kappa}\left(\prod_{l=1}^{n}\left\|\mathbf{W}_{l}\right\|_{2}\right)\right. \\
& \left.\cdot \sum_{l=1}^{n} \prod_{j=1}^{l}\left\|\mathbf{W}_{j}\right\|_{2}\right\}^{2} \sum_{l=1}^{n} \frac{\left\|\mathbf{W}_{l}\right\|_{F}^{2}}{\left\|\mathbf{W}_{l}\right\|_{2}^{2}} \tag{31}
\end{align*}
$$

for FGM attack.
Proofs for PGM attack are similar (combine Eqs. (28) and (30) and Appendix C. 3 in [25]).

C. Sampling Method

We use sharpness-like method [34] to get a set of weight samples $(\mathbf{W}+\eta)$ such that $\left|\mathcal{L}\left(f_{\mathbf{W}+\eta}\right)-\mathcal{L}\left(f_{\mathbf{W}}\right)\right| \leq \epsilon^{\prime}$ (e.g., $\epsilon^{\prime}=0.05$ for CIFAR-10/SVHN and $\epsilon^{\prime}=0.1$ for CIFAR-100), where $\operatorname{vec}(\eta)$ is a $\mathbf{0}$ mean Gaussian noise. To get the samples from the posteriori distribution steadily and fastly, we train the convergent network with learning rate 0.0001 , noise η and 50 epochs, then collect corresponding 50 samples. As the samples are stabilized at (clean/adversarial) training loss and validation loss but with different weights, we can treat them as the samples from same (clean/adversarial) posteriori distribution and estimate the correlation matrix through these samples.

D. Proofs of Lems. 4.1, 4.2

As we assume $r_{\mathbf{s}} r_{\mathbf{s}^{\prime}} \geq 0$ (above Lem. 4.1), we give the proofs with two cases ($r_{\mathrm{s}} \geq 0$ and $r_{\mathrm{s}} \leq 0$).

Proof for Lem. 4.1.

Let $r_{\mathrm{s}} \geq 0$ and $r_{\mathbf{s}^{\prime}} \geq 0$, we get

$$
\begin{align*}
\Lambda_{l, \max }^{\prime} & =\max \left(\left\|\mathbf{R}_{l, \mathcal{S}}^{\prime}\right\|_{2}^{\frac{1}{2}},\left\|\mathbf{R}_{l, \mathcal{S}^{\prime}}^{\prime}\right\|_{2}^{\frac{1}{2}}\right) \\
& =\sqrt{h\left(1+(h-1) \max \left(r_{\mathbf{s}}, r_{\mathbf{s}^{\prime}}\right)\right)} \tag{32}
\end{align*}
$$

and

$$
\begin{align*}
\Lambda_{l, \max }^{\prime \prime} & =\max \left(\left\|\mathbf{R}_{l, \mathcal{S}}^{\prime \prime}\right\|_{2}^{\frac{1}{2}},\left\|\mathbf{R}_{l, \mathcal{S}^{\prime}}^{\prime \prime}\right\|_{2}^{\frac{1}{2}}\right) \\
& =\sqrt{h\left(1+(h-1) \max \left(r_{\mathbf{s}}, r_{\mathbf{s}^{\prime}}\right)\right)} \tag{33}
\end{align*}
$$

Thus, decreasing $\left\|\mathbf{R}_{l, \mathcal{S}}\right\|_{F}^{2}$ and $\left\|\mathbf{R}_{l, \mathcal{S}^{\prime}}\right\|_{F}^{2}$ leads to a decline in $\Lambda_{l, \text { max }}^{\prime}$ and $\Lambda_{l, \text { max }}^{\prime \prime}$.

Let $r_{\mathrm{s}} \leq 0$ and $r_{\mathrm{s}^{\prime}} \leq 0$, we get

$$
\begin{align*}
\Lambda_{l, \max }^{\prime} & =\max \left(\left\|\mathbf{R}_{l, \mathcal{S}}^{\prime}\right\|_{2}^{\frac{1}{2}},\left\|\mathbf{R}_{l, \mathcal{S}^{\prime}}^{\prime}\right\|_{2}^{\frac{1}{2}}\right) \\
& =\sqrt{h\left(1-\min \left(r_{\mathbf{s}}, r_{\mathbf{s}^{\prime}}\right)\right)} \tag{34}
\end{align*}
$$

Figure 3. (a) We sample 10000 9-dimensional correlation matrices and demonstrate $\left\|\mathbf{R}_{l}\right\|_{F}^{2}$ w.r.t $\Lambda_{l, \max }^{\prime}$ or $\Lambda_{l, \max }^{\prime \prime}$. (b) We sample 10000 9-dimensional correlation matrices and demonstrate $\left\|\mathbf{R}_{l}\right\|_{F}^{2}$ w.r.t $\Lambda_{l, \min }^{k_{l}} \Lambda_{l, \max }^{h^{2}-k_{l}}$. (c) We sample 10000 16-dimensional correlation matrices and demonstrate $\left\|\mathbf{R}_{l}\right\|_{F}^{2}$ w.r.t $\Lambda_{l, \max }^{\prime}$ or $\Lambda_{l, \max }^{\prime \prime}$. (d) We sample 10000 16-dimensional correlation matrices and demonstrate $\left\|\mathbf{R}_{l}\right\|_{F}^{2}$ w.r.t $\Lambda_{l, \min }^{k_{l}} \Lambda_{l, \max }^{h^{2}-k_{l}}$.

Figure 4. (a) shows the normalized spectral norm of $\mathbf{R}_{\mathcal{S}}^{\prime}, \mathbf{R}^{\prime \prime}{ }_{\mathcal{S}}$, and the determinant of $\mathbf{R}_{\mathcal{S}}$, with sampling estimation (S) and Laplace approximation (L) respectively. (b) and (c) demonstrate the absolute correlation matrix of partial weights (estimate under clean data), for AT and $\mathrm{AT}+\mathrm{S}^{2} \mathrm{O}$ respectively.
and

$$
\begin{align*}
\Lambda_{l, \max }^{\prime \prime} & =\max \left(\left\|\mathbf{R}_{l, \mathcal{S}}^{\prime \prime}\right\|_{2}^{\frac{1}{2}},\left\|\mathbf{R}_{l, \mathcal{S}^{\prime}}^{\prime \prime}\right\|_{2}^{\frac{1}{2}}\right) \tag{35}\\
& =\sqrt{h\left(1-\min \left(r_{\mathbf{s}}, r_{\mathbf{s}^{\prime}}\right)\right)}
\end{align*}
$$

Thus, decreasing $\left\|\mathbf{R}_{l, \mathcal{S}}\right\|_{F}^{2}$ and $\left\|\mathbf{R}_{l, \mathcal{S}^{\prime}}\right\|_{F}^{2}$ leads to a decline in $\Lambda_{l, \text { max }}^{\prime}$ and $\Lambda_{l, \text { max }}^{\prime \prime}$.

Proof for Lem. 4.2.

Let $r_{\mathbf{s}} \geq r_{\mathbf{s}^{\prime}} \geq 0$, we get

$$
\begin{align*}
c(r) & =\Lambda_{l, \min }^{k_{l}} \Lambda_{l, \max }^{h^{2}-k_{l}} \tag{36}\\
& =\left(1-r_{\mathbf{s}}\right)^{h^{2}-1}\left(1+\left(h^{2}-1\right) r_{\mathbf{s}}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial c(r)}{\partial r_{\mathbf{s}}}=-h^{2}\left(h^{2}-1\right) r_{\mathbf{s}}\left(1-r_{\mathbf{s}}\right)^{h^{2}-2} \leq 0 \tag{37}
\end{equation*}
$$

it is easy to get $c(r)$ is negative correlated with r_{s}. Similarly, if $r_{\mathbf{s}^{\prime}} \geq r_{\mathbf{s}} \geq 0$, we can get $c(r)$ is negative correlated with $r_{\mathbf{s}^{\prime}}$. Thus, decreasing $\left\|\mathbf{R}_{l, \mathcal{S}}\right\|_{F}^{2}$ and $\left\|\mathbf{R}_{l, \mathcal{S}^{\prime}}\right\|_{F}^{2}$ leads to an increase in $\Lambda_{l, \text { min }}^{k_{l}} \Lambda_{l, \text { max }}^{h^{2}-k_{l}}$.

Let $r_{\mathrm{s}} \leq r_{\mathrm{s}^{\prime}} \leq 0$, we get

$$
\begin{align*}
c(r) & =\Lambda_{l, \min }^{k_{l}} \Lambda_{l, \max }^{h^{2}-k_{l}} \\
& =\left(1+\left(h^{2}-1\right) r_{\mathbf{s}}\right)\left(1-r_{\mathbf{s}}\right)^{h^{2}-1} \tag{38}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial c(r)}{\partial r_{\mathbf{s}}}=-h^{2}\left(h^{2}-1\right) r_{\mathbf{s}}\left(1-r_{\mathbf{s}}\right)^{h^{2}-2} \geq 0 \tag{39}
\end{equation*}
$$

it is also easy to get $c(r)$ is positive correlated with $r_{\mathbf{s}}$. Similarly, if $r_{\mathbf{s}^{\prime}} \leq r_{\mathrm{s}} \leq 0$, we can get $c(r)$ is positive correlated with $r_{\mathbf{s}^{\prime}}$. Thus, decreasing $\left\|\mathbf{R}_{l, \mathcal{S}}\right\|_{F}^{2}$ and $\left\|\mathbf{R}_{l, \mathcal{S}^{\prime}}\right\|_{F}^{2}$ leads to an increase in $\Lambda_{l, \text { min }}^{k_{l}} \Lambda_{l, \max }^{h^{2}-k_{l}}$.

E. Simulations of Lems. 4.1, 4.2 and Second-

 Order Statistics of Weights under Clean DataAs Fig. 3 shows, for 10000 random general 9-dimensional correlation matrices and 16-dimensional correlation matrices respectively, Lems. 4.1 and 4.2 also hold approximately.

The results in Fig. 4 also suggest that $\mathrm{S}^{2} \mathrm{O}$ can decrease the spectral norm of $\mathbf{R}_{\mathcal{S}}^{\prime}, \mathbf{R}^{\prime \prime}{ }_{\mathcal{S}}$ and increases the determinant of $\mathbf{R}_{\mathcal{S}}$.

F. Approximate Optimization

We use a fast approximate method to update $\mathbf{g}(\mathbf{A})$, i.e., add a penalty term to the high correlated $\mathbf{a}_{l, i}$ and $\mathbf{a}_{l, j}$ to reduce their correlation. Details are given in the code.

