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1. Detailed model architecture
The comprehensive configuration of attentive squeeze

network is summarized in Table 1, and its building block,
attentive squeeze layer, is depicted in Fig. 1. The chan-
nel sizes of the input correlation {C(1)

in , C
(2)
in , C

(3)
in } corre-

sponds to {4, 6, 3}, {4, 23, 3}, {3, 3, 1} for ResNet50 [5],
ResNet101, VGG-16 [11], respectively.

2. Implementation details
Our framework is implemented on PyTorch [9] using the

PyTorch Lightning [4] framework. To reproduce the ex-
isting methods, we heavily borrow publicly available code
bases. 1 We set the officially provided hyper-parameters for
each method while sharing generic techniques for all the
methods, e.g., excluding images of small support objects
for support sets or switching the role between the query and
the support during training. NVIDIA GeForce RTX 2080 Ti
GPUs or NVIDIA TITAN Xp GPUs are used in all exper-
iments, where we train models using two GPUs on Pascal-
5i [10] while using four GPUs on COCO-20i [8]. Model
training is halt either when it reaches the maximum 500th
epoch or when it starts to overfit. We resize input images to
400× 400 without any data augmentation strategies during
both training and testing time for all methods. For segmen-
tation evaluation, we recover the two-channel output fore-

1PANet [14]: https://github.com/kaixin96/PANet
PFENet [12]: https : / / github . com / dvlab - research /
PFENet
HSNet [7]: https://github.com/juhongm999/hsnet
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Figure 1. Illustration of the proposed attentive squeeze layer
(Sec. 5.1. in the main paper). The shape of each output tensor
is denoted next to arrows.

ground map to its original image size by bilinear interpola-
tion. Pascal-5i and COCO-20i is derived from Pascal Visual
Object Classes 2012 [3] and Microsoft Common Object in
Context 2014 [6], respectively. To construct episodes from
datasets, we sample support sets such that one of the query
classes is included in the support set by the probability of
0.5 to balance the ratio of background episodes across arbi-
trary benchmarks.

3. Further analyses

In this section we provide supplementary analyses on the
iFSL framework and ASNet. All experimental results are
obtained using ResNet50 on Pascal-5i and evaluated with
1-way 1-shot episodes unless specified otherwise.
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[pool support dims. by half]
AS(C

(1)
in → 32, 5, 4, 2) AS(C

(2)
in → 32, 5, 4, 2) AS(C

(3)
in → 32, 5, 4, 2)

AS(32 → 128, 5, 4, 2) AS(32 → 128, 5, 4, 2) AS(32 → 128, 3, 2, 1)
[pool support dims.]

[upsample query dims.]
[element-wise addition]
AS(128 → 128, 1, 1, 0)
AS(128 → 128, 2, 1, 0)
[upsample query dims.]

[element-wise addition]
AS(128 → 128, 1, 1, 0)
AS(128 → 128, 2, 1, 0)
conv(128 → 128, 3, 1, 1)

ReLU
conv(128 → 64, 3, 1, 1)

ReLU
[upsample query dims.]
conv(64 → 64, 3, 1, 1)

ReLU
conv(64 → 2, 3, 1, 1)

[interpolate query dims. to the input size]

Table 1. Comprehensive configuration of ASNet of which
overview is illustrated in Fig. 2 in the main paper. The top of the
table is the input of the model and the detailed architecture of the
model below it. AS(Cin → Cout, k, s, p) denotes an AS layer of
the kernel size (k), stride (s), padding size (p) for the convolutional
embedding with the input channel (Cin) and output channel (Cout).
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Figure 2. Classification threshold δ and its effects.

The classification occurrence threshold δ. Equation 2 in
the main paper describes the process of detecting object
classes on the shared foreground map by thresholding the
highest foreground probability response on each foreground
map. As the foreground probability is bounded from 0 to
1, we set the threshold δ = 0.5 for simplicity. A high
threshold value makes a classifier reject insufficient proba-
bilities as class presences. Figure 2 shows the classification
0/1 exact ratios by varying the threshold, which reaches the
highest classification performance around δ = 0.5 and 0.6.
Fine-tuning the threshold for the best classification perfor-
mance is not the focus of this work, thus we opt for the most
straightforward threshold δ = 0.5 for all experiments.

Visualization of Ybg. Figure 3 visually demonstrates the
background merging step of iFSL in Eq. (3) in the main pa-
per. The background maps are taken from the 2-way 1-shot
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Figure 3. Visualization of background map for each support class
and the merged background map Ybg for the query. High back-
ground response is illustrated in black.

episodes. The background response of the negative class is
relatively even, i.e., the majority of pixels are estimated as
background, whereas the background response of the posi-
tive class highly contributes to the merged background map.

iFSL with weak labels, strong labels, and both. Ta-
ble 2 compares FS-CS performances of three ASNets each
of which trained with the classification loss (Eq. (6) in the
main paper), the segmentation loss (Eq. (7) in the main pa-
per), or both. The loss is chosen upon the level of super-
visions on support sets; classification tags (weak labels) or
segmentation annotations (strong labels). We observe that
neither the classification nor segmentation performances
deviate significantly between LS and LC + LS; their per-
formances are not even 0.3%p different. As a segmentation
annotation is a dense form of classification tags, thus the
classification loss influences insignificantly when the seg-
mentation loss is used for training. We thus choose to use
the segmentation loss exclusively in the presence of seg-
mentation annotations.

4. Additional results

Here we provide several extra experimental results that
are omitted in the main paper due to the lack of space. The
contents include results using other backbone networks, an-
other evaluation metric, and K shots where K > 1.

iFSL on FS-CS using ResNet101. We include the FS-
CS results of the iFSL framework on Pascal-5i using



1-way 1-shot 2-way 1-shot

classification 0/1 exact ratio (%) segmentation mIoU (%) classification 0/1 exact ratio (%) segmentation mIoU (%)

method 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg.

ASNet (LC) 86.4 86.3 70.9 84.5 82.0 10.8 20.2 13.1 16.1 15.0 71.6 72.4 46.4 68.0 64.6 11.4 20.8 12.5 15.9 15.1
ASNet (LS) 84.9 89.6 79.0 86.2 84.9 51.7 61.5 43.3 52.8 52.3 68.5 76.2 58.6 70.0 68.3 48.5 58.3 36.3 48.3 47.8
ASNet (LC + LS) 86.9 87.4 75.8 88.7 84.7 51.6 61.2 42.4 53.2 52.1 70.1 72.4 54.8 74.8 68.0 48.1 57.1 36.0 50.1 47.8

Table 2. FS-CS results of ASNet trained with iFSL objectives. LC, LS, and LC + LS corresponds to iFSL learning objectives given
classification tags, segmentation annotations, or both, respectively.

1-way 1-shot 2-way 1-shot

classification 0/1 exact ratio (%) segmentation mIoU (%) classification 0/1 exact ratio (%) segmentation mIoU (%)

method 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg.

PANet [14] 80.8 76.6 74.4 75.5 76.8 33.6 48.6 32.3 37.6 38.0 72.4 64.5 53.4 64.7 63.8 37.4 49.1 33.1 39.7 39.8
PFENet [12] 68.4 83.0 65.8 75.2 73.1 37.7 55.3 34.5 44.8 43.1 25.9 56.2 44.6 38.8 41.4 31.2 47.2 28.9 33.5 35.2
HSNet [7] 86.6 86.6 75.7 86.0 83.7 49.0 60.6 42.5 52.3 51.1 74.6 74.4 55.6 70.8 68.9 40.9 52.0 36.4 47.8 44.3
ASNet 87.2 88.1 77.2 87.2 84.9 53.5 62.0 43.9 55.1 53.6 73.1 76.8 56.7 74.7 70.3 49.5 56.3 40.0 50.0 48.9

Table 3. FS-CS results on Pascal-5i using ResNet101.

2-way 1-shot

classification 0/1 exact ratio (%) classification accuracy (%)

method 50 51 52 53 avg. 50 51 52 53 avg.

PANet [14] 56.2 47.5 44.6 55.4 50.9 74.9 70.2 67.8 74.8 71.9
PFENet [12] 22.5 61.7 40.3 39.5 41.0 64.1 79.5 66.4 66.1 69.0
HSNet [7] 68.0 73.2 57.0 70.9 67.3 82.4 85.6 76.0 84.5 82.1
ASNetw 71.6 72.1 46.4 68.0 64.6 84.9 85.4 69.2 82.2 80.4
ASNet 68.5 76.2 58.6 70.0 68.3 82.9 87.5 76.7 84.0 82.8

Table 4. FS-CS classification accuracy (%) and 0/1 exact ratio (%)
on Pascal-5i using ResNet50.

ResNet101 [5] in Table 3, which is missing in the main pa-
per due to the page limit. All other experimental setups
are matched with those of Table 1 in the main paper except
for the backbone network. ASNet also shows greater per-
formances than the previous methods on both classification
and segmentation tasks with another backbone.
FS-CS classification metrics: 0/1 exact ratio and accu-
racy. Table 4 presents the results of two classification eval-
uation metrics of FS-CS: 0/1 exact ratio [2] and classifica-
tion accuracy. The classification accuracy metric takes the
average of correct predictions for each class for each query,
while 0/1 exact ratio measures the binary correctness for
all classes for each query, thus being stricter than the ac-
curacy; the exact formulations are in Sec. 6.1. of the main
paper. ASNet shows higher classification performance in
both classification metrics than others.
iFSL on 5-shot FS-CS. Tables 5 and 6 compares four dif-
ferent methods on the 1-way 5-shot and 2-way 5-shot FS-
CS setups, which are missing in the main paper due to the
page limit. All other experimental setups are matched with
those of Table 1 in the main paper except for the number of
support samples for each class, i.e., varying K shots. ASNet
also outperforms other methods on the multi-shot setups.
ASNet on FS-S using VGG-16. Table 7 compares the

recent state-of-the-art methods and ASNet on FS-S using
VGG-16 [11]. We train and evaluate ASNet with the FS-S
problem setup to fairly compare with the recent methods.
All the other experimental variables are detailed in Sec. 6.3.
and Table 3 of the main paper. ASNet consistently shows
outstanding performances using the VGG-16 backbone net-
work as observed in experimnets using ResNets.

Qualitative results. We attach additional segmentation pre-
dictions of ASNet learned with the iFSL framework on the
FS-CS task in Fig. 4. We observe that ASNet successfully
predicts segmentation maps at challenging scenarios in the
wild such as a) segmenting tiny objects, b) segmenting non-
salient objects, c) segmenting multiple objects, and d) seg-
menting a query given a small support object annotation.

Qualitative results of ASNetFS-S. Figure 5 visualizes typi-
cal failure cases of the ASNetFS-S model in comparison with
ASNetFS-CS; these examples qualitatively show the severe
performance drop of ASNetFS-S on FS-CS, which is quanti-
tatively presented in Fig. 5 (b) of the main paper. Sharing
the same architecture of ASNet, each model is trained on ei-
ther FS-S or FS-CS setup and evaluated on the 2-way 1-shot
FS-CS setup. The results demonstrate that ASNetFS-S is un-
aware of object classes and gives foreground predictions on
any existing objects, whereas ASNetFS-CS effectively distin-
guishes the object classes based on the support classes and
produces clean and adequate segmentation maps.

Fold-wise results on COCO-20i. Tables 9 and 10 present
fold-wise performance comparison on the FS-CS and FS-S
tasks, respectively. We validate that ASNet outperforms the
competitors by large margins in both the FS-CS and FS-S
tasks on the challenging COCO-20i benchmark.

Numerical performances of Fig. 4 in the main paper. We
report the numerical performances of the Fig. 4 in the main
paper in Table 8 as a reference for following research.



1-way 5-shot 2-way 5-shot

classification 0/1 exact ratio (%) segmentation mIoU (%) classification 0/1 exact ratio (%) segmentation mIoU (%)

method 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg.

PANet [14] 72.5 70.2 70.7 74.6 72.0 45.6 56.2 44.6 49.2 48.9 61.1 46.8 44.0 66.2 54.5 46.2 57.4 46.7 47.6 49.5
PFENet [12] 70.9 84.5 67.1 80.4 75.7 42.8 56.3 36.2 47.3 45.7 22.3 63.2 42.5 40.6 42.2 35.9 50.5 33.3 35.4 38.8
HSNet [7] 91.1 88.1 82.0 90.7 88.0 56.2 61.3 40.2 54.2 53.0 79.7 81.0 65.0 81.0 76.7 42.5 58.9 32.0 44.1 44.4
ASNet 90.5 90.4 82.3 91.8 88.8 59.2 63.5 41.2 58.7 55.7 81.4 81.4 68.0 80.6 77.9 53.4 60.4 35.9 50.6 50.1

Table 5. FS-CS results on 5-shot setups on Pascal-5i using ResNet50.

1-way 5-shot 2-way 5-shot

classification 0/1 exact ratio (%) segmentation mIoU (%) classification 0/1 exact ratio (%) segmentation mIoU (%)

method 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg.

PANet [14] 83.7 81.6 78.3 81.3 81.2 48.2 59.1 45.5 50.5 50.8 79.0 68.4 60.5 72.3 70.1 49.1 59.6 46.8 50.1 51.4
PFENet [12] 70.3 85.3 65.9 78.6 75.0 42.2 56.0 35.7 48.7 45.7 26.9 56.0 49.2 37.3 42.4 35.7 49.6 31.4 36.9 38.4
HSNet [7] 91.4 89.5 79.4 90.9 87.8 55.2 64.2 41.7 58.4 54.9 85.6 80.8 61.3 81.7 77.4 38.5 57.6 34.8 49.8 45.2
ASNet 91.5 90.2 80.6 93.4 88.9 60.3 64.7 41.4 58.5 56.2 82.8 81.1 65.1 85.5 78.6 53.8 61.0 34.2 52.2 50.3

Table 6. FS-CS results on 5-shot setups on Pascal-5i using ResNet101.

1-way 1-shot 1-way 5-shot # learn.

method 50 51 52 53 mIoU FBIoU 50 51 52 53 mIoU FBIoU params.

VGG-16

OSLSM [10] 33.6 55.3 40.9 33.5 40.8 - 35.9 58.1 42.7 39.1 43.9 - 276.7 M
PANet [14] 42.3 58.0 51.1 41.2 48.1 66.5 51.8 64.6 59.8 46.5 55.7 70.7 14.7 M
FWB [8] 47.0 59.6 52.6 48.3 51.9 - 50.9 62.9 56.5 50.1 55.1 - -
RPMMs [18] 47.1 65.8 50.6 48.5 53.0 - 50.0 66.5 51.9 47.6 54.0 - -
PFENet [12] 56.9 68.2 54.4 52.4 58.0 72.0 59.0 69.1 54.8 52.9 59.0 72.3 10.4 M
HSNet [7] 59.6 65.7 59.6 54.0 59.7 73.4 64.9 69.0 64.1 58.6 64.1 76.6 2.6 M
ASNet 61.7 66.7 58.6 55.3 60.6 73.2 66.5 69.6 63.0 60.5 64.9 76.5 1.3 M

R101

FWB [8] 51.3 64.5 56.7 52.2 56.2 - 54.8 67.4 62.2 55.3 59.9 - 43.0 M
DAN [13] 54.7 68.6 57.8 51.6 58.2 71.9 57.9 69.0 60.1 54.9 60.5 72.3 -
RePRI [1] 59.6 68.6 62.2 47.2 59.4 - 66.2 71.4 67.0 57.7 65.6 - 65.7 M
PFENet [12] 60.5 69.4 54.4 55.9 60.1 72.9 62.8 70.4 54.9 57.6 61.4 73.5 10.8 M
MLC [19] 60.8 71.3 61.5 56.9 62.6 - 65.8 74.9 71.4 63.1 68.8 - 27.7 M
HSNet [7] 67.3 72.3 62.0 63.1 66.2 77.6 71.8 74.4 67.0 68.3 70.4 80.6 2.6 M
ASNet 69.0 73.1 62.0 63.6 66.9 78.0 73.1 75.6 65.7 69.9 71.1 81.0 1.3 M

Table 7. FS-S results on 1-way 1-shot and 1-way 5-shot setups on PASCAL-5i using VGG-16 [11] and ResNet101 [5].

N -way 1-shot

classification 0/1 exact ratio (%) segmentation mIoU (%)

method 1 2 3 4 5 1 2 3 4 5

PANet [14] 69.0 50.9 39.3 29.1 22.2 36.2 37.2 37.1 36.6 35.3
PFENet [12] 74.6 41.0 24.9 14.5 7.9 43.0 35.3 30.8 27.6 24.9
HSNet [7] 82.7 67.3 52.5 45.2 36.8 49.7 43.5 39.8 38.1 36.2
ASNet 84.9 68.3 55.8 46.8 37.3 52.3 47.8 45.4 44.5 42.4

Table 8. Numerical results of Fig. 4 in the main paper: FS-CS
performances on N -way 1-shot by varying N from 1 to 5.
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