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1. Detailed model architecture

The comprehensive configuration of attentive squeeze
network is summarized in Table 1, and its building block,
attentive squeeze layer, is depicted in Fig. 1. The chan-
nel sizes of the input correlation {Ci(nl), C’i(nz)7 C’if')} corre-
sponds to {4, 6,3}, {4,23,3}, {3,3,1} for ResNet50 [5],
ResNet101, VGG-16 [ 1 1], respectively.

2. Implementation details

Our framework is implemented on PyTorch [9] using the
PyTorch Lightning [4] framework. To reproduce the ex-
isting methods, we heavily borrow publicly available code
bases. | We set the officially provided hyper-parameters for
each method while sharing generic techniques for all the
methods, e.g., excluding images of small support objects
for support sets or switching the role between the query and
the support during training. NVIDIA GeForce RTX 2080 Ti
GPUs or NVIDIA TITAN Xp GPUs are used in all exper-
iments, where we train models using two GPUs on Pascal-
5% [10] while using four GPUs on COCO-20° [8]. Model
training is halt either when it reaches the maximum 500y,
epoch or when it starts to overfit. We resize input images to
400 x 400 without any data augmentation strategies during
both training and testing time for all methods. For segmen-
tation evaluation, we recover the two-channel output fore-

IPANet [14]: https://github.com/kaixin96/PANet
PFENet [12]: https://github.com/dvlab- research/
PFENet
HSNet [7]: https://github.com/juhongm999/hsnet
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Figure 1. Illustration of the proposed attentive squeeze layer
(Sec. 5.1. in the main paper). The shape of each output tensor
is denoted next to arrows.

ground map to its original image size by bilinear interpola-
tion. Pascal-5! and COCO-20 is derived from Pascal Visual
Object Classes 2012 [3] and Microsoft Common Object in
Context 2014 [6], respectively. To construct episodes from
datasets, we sample support sets such that one of the query
classes is included in the support set by the probability of
0.5 to balance the ratio of background episodes across arbi-
trary benchmarks.

3. Further analyses

In this section we provide supplementary analyses on the
iFSL framework and ASNet. All experimental results are
obtained using ResNet50 on Pascal-5¢ and evaluated with
1-way 1-shot episodes unless specified otherwise.
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[pool support dims. by half]
AS(C) - 32,5,4,2)
AS(32 — 128,5,4,2)

[pool support dims.]

[upsample query dims.]

[element-wise addition]

AS(128 — 128,1,1,0)

AS(128 — 128,2,1,0)

[upsample query dims.]

AS(C®) 5 32,5,4,2) AS(CY) — 32,5,4,2)
AS(32 —128,5,4,2)  AS(32 — 128,3,2,1)

[V

[element-wise addition]
AS(128 — 128,1,1,0)
AS(128 — 128,2,1,0)
conv(128 — 128,3,1,1)
ReLU
conv(128 — 64,3,1,1)
ReLU
[upsample query dims.]
conv(64 — 64,3,1,1)
ReLU
conv(64 — 2,3,1,1)
[interpolate query dims. to the input size]

Table 1. Comprehensive configuration of ASNet of which
overview is illustrated in Fig. 2 in the main paper. The top of the
table is the input of the model and the detailed architecture of the
model below it. AS(Cin — Cou, k, s, p) denotes an AS layer of
the kernel size (k), stride (s), padding size (p) for the convolutional
embedding with the input channel (C},) and output channel (Coy).
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Figure 2. Classification threshold § and its effects.

The classification occurrence threshold 6. Equation 2 in
the main paper describes the process of detecting object
classes on the shared foreground map by thresholding the
highest foreground probability response on each foreground
map. As the foreground probability is bounded from 0 to
1, we set the threshold 6 = 0.5 for simplicity. A high
threshold value makes a classifier reject insufficient proba-
bilities as class presences. Figure 2 shows the classification
0/1 exact ratios by varying the threshold, which reaches the
highest classification performance around § = 0.5 and 0.6.
Fine-tuning the threshold for the best classification perfor-
mance is not the focus of this work, thus we opt for the most
straightforward threshold § = 0.5 for all experiments.

Visualization of Yyg. Figure 3 visually demonstrates the
background merging step of iFSL in Eq. (3) in the main pa-
per. The background maps are taken from the 2-way 1-shot
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Figure 3. Visualization of background map for each support class
and the merged background map Yy, for the query. High back-
ground response is illustrated in black.

episodes. The background response of the negative class is
relatively even, i.e., the majority of pixels are estimated as
background, whereas the background response of the posi-
tive class highly contributes to the merged background map.

iFSL with weak labels, strong labels, and both. Ta-
ble 2 compares FS-CS performances of three ASNets each
of which trained with the classification loss (Eq. (6) in the
main paper), the segmentation loss (Eq. (7) in the main pa-
per), or both. The loss is chosen upon the level of super-
visions on support sets; classification tags (weak labels) or
segmentation annotations (strong labels). We observe that
neither the classification nor segmentation performances
deviate significantly between Lg and Lc + Ls; their per-
formances are not even 0.3%p different. As a segmentation
annotation is a dense form of classification tags, thus the
classification loss influences insignificantly when the seg-
mentation loss is used for training. We thus choose to use
the segmentation loss exclusively in the presence of seg-
mentation annotations.

4. Additional results

Here we provide several extra experimental results that
are omitted in the main paper due to the lack of space. The
contents include results using other backbone networks, an-
other evaluation metric, and K shots where K > 1.

iFSL on FS-CS using ResNet101. We include the FS-
CS results of the iFSL framework on Pascal-5' using



1-way 1-shot 2-way 1-shot

classification 0/1 exact ratio (%) classification 0/1 exact ratio (%)

method 50 5t 52 53

segmentation mloU (%)

51 52 53

segmentation mloU (%)

avg. ‘ 50 avg. H 50 5! 52 5% avg. ‘ 50 5! 52 5% avg.
ASNet (Lc) 864 863 709 845 820|108 202 13.1 16.1 150 71.6 724 464 68.0 646 | 114 208 125 159 151
ASNet (Ls) 849 89.6 79.0 862 849|517 615 433 528 523 685 762 58.6 70.0 68.3 | 48.5 583 363 483 478
ASNet (Lc + Ls) 869 874 758 887 847|516 612 424 532 52.11 70.1 724 548 748 68.0 |48.1 57.1 36.0 50.1 478

Table 2. FS-CS results of ASNet trained with iFSL objectives. Lc, Ls, and Lc + Ls corresponds to iFSL learning objectives given

classification tags, segmentation annotations, or both, respectively.

1-way 1-shot

2-way 1-shot

classification 0/1 exact ratio (%)

segmentation mloU (%)

classification 0/1 exact ratio (%) segmentation mloU (%)

=0

method 5 5! 5} ) 51! 52 53

=3

avg. \ 50 5 5 5 avg. H 50 5! 52 5 avg. \ 50 5! 52 5% avg.

PANet[14] 80.8 76.6 744 755 76.8|33.6 486 323 376 380 | 724 645 534 647 638|374 49.1 331 397 398

PFENet [12] 684 83.0 658 752 73.1 377 553 345 448 43.1 | 259 562 446 388 414|312 472 289 335 352

HSNet [7] 86.6 86.6 757 86.0 837|490 60.6 425 523 51.1 | 746 744 556 708 689|409 520 364 478 443

ASNet 87.2 881 772 872 849|535 62.0 439 551 53.6 | 731 768 56.7 747 70.3 | 49.5 56.3 40.0 50.0 48.9

Table 3. FS-CS results on Pascal-5° using ResNet101.

2-way I-shot recent state-of-the-art methods and ASNet on FS-S using

classification 0/1 exact ratio (%) classification accuracy (%) VGG-16 [11]. We train and evaluate ASNet with the FS-S

method 50 50 52 5% avg | 5° 51 5% 5% awg problem setup to fairly compare with the recent methods.

PANet[14] 562 475 446 554 509 || 749 702 67.8 748 719 All the other experimental variables are detailed in Sec. 6.3.

PFENel[ ] 225 61.7 403 39.5 410 64.1 79.5 664 66.1 69.0 and Table 3 Of the main paper. ASNet Consistently shows

HSNet[7]  68.0 732 57.0 709 67.3 || 824 856 760 84.5 82.1 tstandi . ine the VGG-16 backb ‘

ASNet, 716 721 464 680 646 | 849 854 692 822 so4  Ouistanding periormances using the V-0 backbone net-
ASNet 68.5 762 58.6 700 683 | 829 87.5 767 840 82.8 work as observed in experimnets using ResNets.

Table 4. FS-CS classification accuracy (%) and 0/1 exact ratio (%)
on Pascal-5" using ResNet50.

ResNet101 [5] in Table 3, which is missing in the main pa-
per due to the page limit. All other experimental setups
are matched with those of Table 1 in the main paper except
for the backbone network. ASNet also shows greater per-
formances than the previous methods on both classification
and segmentation tasks with another backbone.

FS-CS classification metrics: 0/1 exact ratio and accu-
racy. Table 4 presents the results of two classification eval-
uation metrics of FS-CS: 0/1 exact ratio [2] and classifica-
tion accuracy. The classification accuracy metric takes the
average of correct predictions for each class for each query,
while 0/1 exact ratio measures the binary correctness for
all classes for each query, thus being stricter than the ac-
curacy; the exact formulations are in Sec. 6.1. of the main
paper. ASNet shows higher classification performance in
both classification metrics than others.

iFSL on 5-shot FS-CS. Tables 5 and 6 compares four dif-
ferent methods on the 1-way 5-shot and 2-way 5-shot FS-
CS setups, which are missing in the main paper due to the
page limit. All other experimental setups are matched with
those of Table 1 in the main paper except for the number of
support samples for each class, i.e., varying K shots. ASNet
also outperforms other methods on the multi-shot setups.

ASNet on FS-S using VGG-16. Table 7 compares the

Qualitative results. We attach additional segmentation pre-
dictions of ASNet learned with the iFSL framework on the
FS-CS task in Fig. 4. We observe that ASNet successfully
predicts segmentation maps at challenging scenarios in the
wild such as a) segmenting tiny objects, b) segmenting non-
salient objects, c) segmenting multiple objects, and d) seg-
menting a query given a small support object annotation.

Qualitative results of ASNetgg_s. Figure 5 visualizes typi-
cal failure cases of the ASNetgg_g model in comparison with
ASNetps_cs; these examples qualitatively show the severe
performance drop of ASNetgs s on FS-CS, which is quanti-
tatively presented in Fig. 5 (b) of the main paper. Sharing
the same architecture of ASNet, each model is trained on ei-
ther FS-S or FS-CS setup and evaluated on the 2-way 1-shot
FS-CS setup. The results demonstrate that ASNetgs_g is un-
aware of object classes and gives foreground predictions on
any existing objects, whereas ASNetgs_cs effectively distin-
guishes the object classes based on the support classes and
produces clean and adequate segmentation maps.

Fold-wise results on COCO-20'. Tables 9 and 10 present
fold-wise performance comparison on the FS-CS and FS-S
tasks, respectively. We validate that ASNet outperforms the
competitors by large margins in both the FS-CS and FS-S
tasks on the challenging COCO-20° benchmark.

Numerical performances of Fig. 4 in the main paper. We
report the numerical performances of the Fig. 4 in the main
paper in Table 8 as a reference for following research.



1-way 5-shot

2-way 5-shot

classification 0/1 exact ratio (%)

segmentation mloU (%)

classification 0/1 exact ratio (%)

segmentation mloU (%)

method 50 5 5 5% avg. | 5° 58 5% 5 avg || 5° 5' 5 5% avg | 5° 5' 5 5 avg
PANet[14] 725 702 70.7 746 720|456 562 446 492 489 | 61.1 468 440 662 545|462 574 467 476 495
PFENet [12] 709 845 67.1 804 757|428 563 362 473 457223 632 425 406 422|359 505 333 354 388
HSNet [7] 91.1 88.1 820 90.7 88.0 |562 613 402 542 530 | 797 810 650 81.0 76.7 | 425 589 320 441 444
ASNet 90.5 904 823 918 888 592 63.5 412 587 557 | 814 814 68.0 806 779|534 604 359 50.6 50.1
Table 5. FS-CS results on 5-shot setups on Pascal-5° using ResNet50.
1-way 5-shot 2-way 5-shot
classification 0/1 exact ratio (%) segmentation mloU (%) classification 0/1 exact ratio (%) segmentation mloU (%)
method 500 58 5 5 avg | 5° 5 5% 5 avg || 5° 5 5 5 avg | 5° 5 5% 5 aw
PANet[14] 837 81.6 783 813 812|482 59.1 455 505 508 79.0 684 605 723 70.1 |49.1 59.6 468 50.1 514
PFENet [12] 703 853 659 78.6 750|422 560 357 487 457269 560 492 373 424|357 496 314 369 384
HSNet [7] 914 895 794 909 878|552 642 417 584 549 | 856 80.8 613 817 774|385 576 348 498 452
ASNet 91.5 90.2 80.6 934 889 603 647 414 585 56.2 | 828 811 651 855 78.6 | 538 610 342 522 503
Table 6. FS-CS results on 5-shot setups on Pascal-5° using ResNet101.
1-way 1-shot 1-way 5-shot # learn.
method 5 5° 5° 5° mloU FBIU || 5° 5 5% 5% mloU FBIoU params.
OSLSM [10] 33.6 553 409 335 408 - 359 581 427 391 439 - 276.7TM
PANet [14] 423 580 S51.1 412 481 66.5 51.8 646 59.8 465 557 70.7 147 M
FWB [8] 470 59.6 526 483 519 - 509 629 565 501 55.1 - -
VGG-16 RPMMs[18] 47.1 658 50.6 485 53.0 - 50.0 665 519 476 540 - -
PFENet [12] 569 682 544 524 58.0 72.0 59.0 69.1 548 529 590 72.3 104 M
HSNet [7] 59.6 657 59.6 540 59.7 734 649 690 641 586 64.1 76.6 26 M
ASNet 617 66.7 58.6 553 60.6 732 66.5 69.6 63.0 60.5 649 76.5 1.3M
FWB [8] 513 645 567 522 562 - 548 674 622 553 599 - 43.0M
DAN [13] 5477 68.6 57.8 516 582 71.9 579 69.0 60.1 549  60.5 72.3 -
RePRI[1] 59.6 68.6 622 472 594 - 66.2 714 670 577 656 - 65.7M
R101 PFENet [12] 60.5 694 544 559 60.1 72.9 628 704 549 576 614 73.5 10.8 M
MLC [19] 60.8 713 615 569 626 - 658 749 714 63.1 688 - 277M
HSNet [7] 673 723 62.0 631 662 71.6 718 744 670 683 704 80.6 2.6 M
ASNet 690 731 62.0 636 669 78.0 731 756 657 699 71.1 81.0 1.3M

Table 7. FS-S results on 1-way 1-shot and 1-way 5-shot setups on PASCAL-5% using VGG-16 [11] and ResNet101 [5].

N-way 1-shot

classification 0/1 exact ratio (%) segmentation mloU (%)

method 1 2 3 4 5| 1 2 3 4 5
PANet[14] 69.0 50.9 393 29.1 222362 372 37.1 366 353
PFENet[12] 74.6 410 249 145 79 || 430 353 308 27.6 249
HSNet[7] 827 673 525 452 36.8 || 49.7 435 39.8 38.1 36.2
ASNet 849 683 558 468 37.3 || 523 478 454 445 424

Table 8. Numerical results

of Fig. 4 in the main paper: FS-CS

performances on N-way 1-shot by varying IV from 1 to 5.
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