
A. Appendix overview
The appendix is organized into the following sections:

• Section B: Hyperparameter and training details

• Section C: Architecture details

• Section D: Training Algorithm Overview

• Section E: Pretraining using the InfoNCE loss

• Section F: Retrieval Results without Projection Head

• Section G: Classification using RGB and optical flow

• Section H: Visualization of learned representations

• Section I: Confusion matrix for action classification

B. Hyperparameter and training details
In addition to the implementation settings described in

Section 4.1, we describe here the hyperparameter and train-
ing settings used for the experiments shown in Section 4.

The triplet margins used are m1 = 0.2 and m2 = 0.04
for the instance-based and temporal discrimination triplet
losses respectively, and the weighting on the temporal dis-
crimination loss is λ = 1. The embeddings that are used for
clustering are computed using the temporal center-crops (16
or 32 frames) of the videos in the training set. The cluster
interval k is set to 5 epochs (i.e. clustering is performed for
every 5 epochs during training), the probability of sampling
positives from the same video (as opposed to the same clus-
ter) is pα = 0.2 for UCF101 and pα = 0.5 for Kinetics400,
and pβ is set to 0.75 (the probability of using optical flow as
the positive is 0.25). We observe that a higher pα works bet-
ter for Kinetics400 since, relative to UCF101, the increased
number of classes and videos make it harder to produce high
quality clusters in the beginning of the pretraining.

For optimization, the SGD optimizer was used with a
fixed learning rate of 0.1, a momentum of 0.5, and no weight
decay. UCF101 training was done on 2 GPUs with a batch
size of 16 samples per GPU, and lasted for 600 epochs.
Kinetics400 training was done on 8 GPUs with a batch size
of 13 samples per GPU, and lasted for 340 epochs.

C. Architecture details
We use the 3D ResNet-18 (R3D-18) architecture [29] for

all experiments. During pretraining, R3D-18 is followed by a
non-linear projection head to project the feature embeddings
onto a 128-dimensional space, as done in SimCLR [13] and
CoCLR [28]. The projection head consists of two fully-
connected layers, with batch normalization and ReLU acti-
vation after the first fully-connected layer. The output from
the projection head is directly used for the nearest neighbour

retrieval task. When evaluating on action classification, the
projection head is replaced with a single linear layer. The
detailed architecture is shown in Table 6.

Table 6. 3D ResNet-18 Architecture [29]. The projection head
is used during the pretraining stage and the nearest neighbour
evaluation. During finetuning, the projection head is discarded, and
a single linear layer is attached after the average pooling layer.

Layer Name Architecture

conv1 7× 7× 7, 64, stride 1 (T), 2(XY)

conv2 x 3× 3× 3 max pool, stride 2[
3× 3× 3, 64
3× 3× 3, 64

]
× 2

conv3 x 3× 3× 3 max pool, stride 2[
3× 3× 3, 128
3× 3× 3, 128

]
× 2

conv4 x 3× 3× 3 max pool, stride 2[
3× 3× 3, 256
3× 3× 3, 256

]
× 2

conv3 x 3× 3× 3 max pool, stride 2[
3× 3× 3, 512
3× 3× 3, 512

]
× 2

average pool

projection head 512× 2048 FC
BatchNorm1d
ReLU
2048× 128 FC

linear layer 512× number of classes FC

D. Training Algorithm Overview

Algorithm 1: SLIC Training Algorithm
Input: encoder fθ(·), unlabeled data X
Procedure:
while not max epoch do

if epoch % cluster interval = 0 then
Z = fθ(X);
{Pi} = FINCH(Z)
select cluster assignments C from

partition P1. C = {1, 2, ..., CP1
}

end
for x in DataLoader(X) do

z = fθ(x)
z+ = PositiveMining(z, C)
z− = NegativeMining(z, z+, C)
Ltriplet =
TripletMarginLoss(z, z+, z−; θ,m1)
Ltemporal = TripletMarginLoss(z,
aug(z), z+; θ,m2)

Ltotal = Ltriplet + λLtemporal

θ = SGD(Ltotal, θ)
end

end



E. Pretraining using the InfoNCE loss
To examine how performance would vary if a different

loss function is used for instance-based discrimination, we
pretrain the model using the InfoNCE loss [25] (replacing
our instance-based triplet loss) with a batch size of 32 across
2 GPUs, and temperature set to 0.1 (these results are not
meant to be an improved version of SLIC, they are a more
detailed analysis on the loss function used). The results for
action recognition and video retrieval are presented in Table
7 and 8 (the SLIC results are those presented in Section 4).
When using the InfoNCE loss during pretraining, SLIC out-
performs its triplet loss counterpart in top-1 video retrieval
for UCF101, but underperforms in all other evaluation tasks.

Table 7. Linear probing and end-to-end finetuning results for ac-
tion classification using the InfoNCE loss pretrained on UCF101,
then fine-tuned on UCF101 and HMDB51, using only visual inputs.
The right-most columns indicate the top-1 accuracy for each dataset.
‘Frozen ✓’ indicates classification with a linear layer on top of a
frozen backbone; ‘Frozen ✗’ indicates end-to-end finetuning.

Method Input Size Arch. Frozen UCF101 HMDB51

SLIC 16× 1282 R3D ✓ 72.3 41.8
SLIC 32× 1282 R3D ✓ 77.7 48.3
SLIC-infoNCE 16× 1282 R3D ✓ 70.2 39.8
SLIC-infoNCE 32× 1282 R3D ✓ 75.4 44.7

SLIC 16× 1282 R3D ✗ 77.4 46.2
SLIC 32× 1282 R3D ✗ 83.2 54.5
SLIC-InfoNCE 16× 1282 R3D ✗ 76.8 45.5
SLIC-InfoNCE 32× 1282 R3D ✗ 81.9 53.6

Table 8. Nearest neighbour video retrieval results using the
InfoNCE loss on UCF101 and HMDB51 (both split-1). Testing
set clips are used as queries to retrieve the top-k nearest neighbors
in the training set, where k ∈ [1, 5, 10, 20]. NT indicates the
temporal input size.

UCF101 / HMDB51

Method NT R@1 R@5 R@10 R@20

SLIC 16 66.7 / 25.3 77.3 / 49.8 82.0 / 64.9 86.4 / 76.1
SLIC 32 71.6 / 28.9 82.4 / 52.8 86.6 / 65.4 90.3 / 77.8
SLIC-InfoNCE 16 66.8 / 21.4 74.5 / 45.1 77.7 / 57.2 81.3 / 71.6
SLIC-InfoNCE 32 74.4 / 26.2 81.0 / 49.7 84.1 / 62.5 87.1 / 75.9

F. Retrieval Results without Projection Head
In this section, we present the nearest neighbour retrieval

results on UCF101 and HMDB51 without the projection
head. After pretraining on the UCF101 dataset, we discard
the non-linear projection head and use the intermediate em-
beddings for retrieval evaluation. The results are presented in
Table 9. When evaluating without the non-linear projection
head on retrieval, SLIC with 32-frame input size achieved
similar results compared to Table 1.

Table 9. Video retrieval results without projection head on
UCF101 and HMDB51. NT indicates the temporal input size.

UCF101 / HMDB51

Method NT R@1 R@5 R@10 R@20

CoCLR-RGB [28] 32 53.3 / 23.2 69.4 / 43.2 76.6 / 53.5 82.0 / 65.5
TCLR [15] 16 56.2 / 22.8 72.2 / 45.4 79.0 / 57.8 85.3 / 73.1

SLIC (S3D-23) 16 58.9 / 22.4 74.0 / 47.3 80.7 / 60.6 86.2 / 74.1
SLIC (S3D-23) 32 67.5 / 28.0 80.1 / 55.1 85.2 / 67.6 90.0 / 79.6
SLIC (R3D-18) 16 61.0 / 24.4 76.2 / 49.0 83.1 / 62.6 88.8 / 75.2
SLIC (R3D-18) 32 70.8 / 28.9 84.6 / 55.6 89.0 / 68.8 92.7 / 81.3

G. Classification using RGB and optical flow
We additionally conduct a study on the effect of using

both the RGB and optical flow views during finetuning for
action classification. The results from this study are not
meant to be an improved version of SLIC, instead they are
only meant to show that using both views can improve per-
formance at the cost of additional memory (from a separate
optical flow classification model) and processing time (from
computing optical flow for test clips). After pretraining on
Kinetics, we finetune the same pretrained model on RGB and
optical flow inputs separately, then average the predictions.
We compare the results to other methods that use 2-stream
inputs, and present the results in Table 10. It is observed in
all methods that using multi-view information during fine-
tuning helps improve the action classification results on both
UCF101 and HMDB51.

Table 10. End-to-end finetuning top-1 accuracy results for ac-
tion classification pretrained on Kinetics400, then fine-tuned on
UCF101 and HMDB51, using only visual inputs. Methods with
† use optical flow in addition to RGB as inputs to the action clas-
sification model. SLICˆ indicates that pretraining used 16 frame
inputs. Dashes indicate unavailable information.

Pretrain. Method Input Size Arch. UCF101 HMDB51

CoCon-RGB* [44] (−)× 2242 R3D-18 71.6 46.0
CoCon-E*† [44] (−)× 2242 R3D-18 78.1 52.0
CoCLR-RGB [28] 32× 1282 S3D-23 87.9 54.6
CoCLR† [28] 32× 1282 S3D-23 90.6 62.9

SLICˆ 32× 1282 R3D-18 83.2 52.2
SLICˆ† 32× 1282 R3D-18 86.3 57.3

H. Visualization of learned representations
We use t-SNE to visualize the learned representations

for the UCF101 test set from self-supervised pretraining on
the UCF101 training set (split-1). We compare our method
(the version trained with 16 frame inputs) to CoCLR [28]
for 20 randomly selected classes (for better visibility) from
UCF101. For SLIC, the center 16 frames are used as inputs,
and for CoCLR, the center 32 frames are used as inputs since
CoCLR was trained using 32-frame inputs. In both cases,
the embeddings visualized are those that were used for the



video retrieval task (the 128-d outputs of the non-linear pro-
jection head for SLIC, and the 1024-d backbone features for
CoCLR), and they are reduced to 50 dimensions using PCA.
The perplexity for t-SNE is set to 30. By comparing Figure
4 and Figure 5, we can see that SLIC representations result
in well separated clusters compared to those of CoCLR.

I. Confusion matrix for action classification
We visualize the confusion matrix of the 19 most con-

fusing classes from UCF101 after end-to-end finetuning in
Figure 6. We can see that most action class pairs that are
poorly distinguished are likely difficult due to their visually
similar semantics. Examples of these confusing action class
pairs are visualized in Figure 7.



Figure 4. t-SNE visualization of SLIC embeddings for 20 randomly chosen action classes from the UCF101 test set (split-1).

Figure 5. t-SNE visualization of CoCLR embeddings for 20 randomly chosen action classes from the UCF101 test set (split-1).



Figure 6. Confusion matrix of UCF101 generated by SLIC after pretraining on UCF101.

Figure 7. Visualization of 3 pairs of action classes that are easily confused.


