Supplementary Materials

A. Choice of Hyperparameters

There are no implementations available online for Ex-
plainGAN [39] so we had to implement it on our own.
The set of hyperparameters are also not stated in the pa-
per. We found the best set of hyperparameters though cross-
validation. We weighted each loss term (L¢jassifiers Lrecons
and Lpror) in the objective equally with coefficient 1. Their
prior loss is also comprised of multiple loss terms (Lo,
Lecounts Lsmoothnesss aNd Lenwopy). We used the coefficient
1000 for the count loss and set the rest as 1. In addition, for
the choice of s, which controls the effect of count loss, we
used 0.05 and 0.1 for MNIST and Fashion-MNIST datasets,
respectively.

For CEM [7], we used the default set of hyperparam-
eters available at the official Github repository ' and set
v = 100, which controls the auto-encoding error. We
used the implementation provided by the authors for the
CVE [1] method. Their feature replacement search occurs
at the last convolutional layer of the classifier. In order to
generate comparable CFs with other baselines, we slightly
changed the objective in both CEM and CVE methods and
set the target to a user-specified class rather than maximum-
non-query class.

We added the PGD targeted adversarial attack [25] as a
baseline. We used the torchattacks® library for doing the
attacks. We set the step size « = 1/255, maximum number
of steps to 1000, and maximum step sizes of ¢ = 64/255
and € = 72/255 for MNIST and Fashion-MNIST datasets,
respectively.

Each loss term in the main objective of C3LT is scaled
by a coefficient which the values are obtained through cross-
validation:

£c3lt = Lcls + aﬁprm + Bﬁcyc + 7£adv (11)
where we set {« = 0.1, = 0.1,y = 0.001} for both
the MNIST and Fashion-MNIST datasets. In addition, we

found one non-linear step to be sufficient in our experiments
and setn = 1.

We used the PyTorch [31] framework to implement and
evaluate all methods (including C3LT) and deep neural net-
wors, except for the CEM which we used the original imple-
mentation in Tensorflow [1]. Across all methods, we used
the same pretrained classifier for both MNIST (99.4% ac-
curacy) and Fashion-MNIST (91.5%) datasets.

'nttps : / / github . com / IBM / Contrastive -
Explanation—-Method
’https : / / github .

attacks-pytorch

com / Harry24k / adversarial -

B. Computation Time Comparison

It is ideal that the CF examples are generated on the
fly. This is particularly helpful when users and machine ex-
planations interact. Many approaches, including CEM and
CVE, generate CF explanations by solving iterative opti-
mization problems and there are no training phase. Hence,
it is not a surprise such methods are not fast and cannot
be used for real-time applications. On the other hand, our
method generate CFs orders of magnitude faster than itera-
tive methods. This is mainly due to the fact that our method
only does a forward pass in the C3LT pipeline during infer-
ence time. We present the average computation time (per
sample) to generate CF explanations from our method and
baselines for the MNIST dataset in Table. 4. ExpGAN is
showing comparable results since their approach also does
a forward pass at inference time. However, it is slightly
slower as their generator has multiple heads while ours does
not. We used the same batch size of 256 for evaluating our
method and ExpGAN. CVE and CEM generate explana-
tions one sample at a time. To run the experiments, we used
a HP Z640 Workstation with a single NVIDIA GeForce
RTX 2080-Ti GPU.

C. Ablation Study

To analyze the contribution of each loss term in L.g;¢,
we conduct an ablation study. We respectively add the £,
Leye, and L4q, 1oss terms to the £, and evaluate the gener-
ated CFs in terms of the metrics explained in the paper. Ta-
ble 5 shows the obtained results from our ablation study on
MNIST dataset. Minimizing the £.;s generates images that
are in the CF class. However, it does not consider minimal
perturbations to the input in order to change the decision
of the classifier, i.e., the input images and the obtained CFs
are distant. This is reflected in the proximity metric (Prozx).
Adding the L, encourages such minimal changes and im-
proves the proximity score while maintaining almost perfect
validity. As one can expect, this improves the COUT metric
as well. Adding the L., further regularizes the training and
helps with learning more accurate transformations. This
further improves the proximity and COUT metrics. Finally,
adding the L4, helps with improving the realism metrics
(IM1, IM2, FID, and KID). This ensures the generated CFs
stay close to the data manifold, resulting in changes that are
actionable and sensible to humans.

D. Distinction from CycleGAN

Here, we first evaluated our method against CycleGAN
[50]. Then, we elaborate on the similarities of C3LT and
CycleGAN and how they distinct from each other. Finally,
we showcase debugging a classifier using C3LT where
methods such as CycleGAN are not useful.

Table 4. Computation Time Comparison of CFs. This table shows the average computation time (per sample) to generate CF examples
in seconds for the MNIST dataset. C3LT is relatively faster than ExpGAN while being significantly faster than CVE and CEM — as they
solve iterative optimization problems to generate CFs. At inference time, our method only does a forward pass through the C3LT pipeline

to generate CFs. This makes our method suitable for CF explanation generation on the fly.

Methods

|| ExpGAN [39] | CEM[7] | CVE[I1] | C3LT (ours)

Time (sec)] || 1.28e—5 |

68.34

‘ 2.91e—2 ‘ 9.23e—6

Table 5. Ablation Study. In this table, we provide the quantitative results obtained from the ablation study of the C3LT objective. We
respectively add the £z, Lcye, and Lag, loss terms to the L5 and evaluate the generated CFs using the CF evaluation metrics.

Lost Terms | couTt | IM1] | IM2x 10| | FID| | KID x1e3| | Proz | | Val?
Leis 0.897 0.47 0.29 40.84 29.22 0113 | 1.0

Lets + Lproa 0.935 0.65 0.34 33.40 22.36 0.076 | 0.998
Lets + Lproa + Leye 0.943 0.78 0.38 29.95 18.65 0.069 | 0.998
Lets + Lproz + Leye + Ladw (C3LT) || 0.948 | 0.70 0.36 22.83 13.39 0.072 | 0.999

CycleGAN learns image-to-image translation using gen-
erative adversarial training. We used the images from the
query and CF classes as the input and output image do-
mains. We used the official implementation of CycleGAN?
and trained translation functions on MNIST and Fashion-
MNIST datasets. Fig. 6 visually compares the CF exam-
ples obtained from CycleGAN and C3LT on both datasets
and various pairs. The generated CFs from C3LT are more
realistic and sharp while CycleGAN results are often blurry
and scattered with meaningless perturbations across the im-
age (e.g. 3 to 8). In addition, the C3LT translations are more
proximal to the original input image (e.g. sneaker to boot).

Table 6 shows quantitative comparison of CycleGAN
and C3LT in terms of CF metrics on MNIST dataset. Fol-
lowing the insights obtained from the visual comparison of
the CFs in Fig. 6, Table 6 corroborates that the CF examples
from C3LT are more realistic and have higher quality. In ad-
dition, the COUT score obtained in this comparison shows
that the C3LT generates more valid and sparse explanations.

CycleGAN [50] learns unpaired image translation using
a cycle-consistent generative adversarial training. While the
cycle-consistency in the C3LT is inspired by it, there are
two main differences that separates our work. First, that
our cycle-consistency is in the latent space of a given (pre-
trained) generator and the transformations are occurring in
the latent space, rather than direct image-to-image transla-
tion. This is favorable as our method can be easily plugged
into state-of-the-art pretrained generative models (GANS,
VAEs, etc.) and discard training them from scratch. Sec-
ond, the CycleGAN is not explaining a classifier. Indeed,
CycleGAN uses two different discriminators to keep the
translated images close to the data manifold of each target

3https://qithub.com/junyanz/CycleGAN

class. However, the main goal of this paper is to explain
a given classifier through CF explanations. In the follwo-
ing, we show that C3LT can be used for debugging a faulty
classifier while methods such as CycleGAN are not helpful.

We use C3LT to provide explanations for a faulty clas-
sifier. Here, we simply rig a classifier by depriving it from
seeing examples from a specific class during the training.
Put it differently, we train a classifier that lacks knowledge
regarding a specific class while it is having a reasonably
well performance on the rest the classes. To that end, we
trained a classifier (identical to the one used for experi-
ments) on MNIST dataset while discarding the training ex-
amples from class 9. This classifier obtains ~ 89% test ac-
curacy — only missing test samples from the left-out class
9. We then attempt to explain the decision of this classi-
fier using C3LT as shown in Fig. 7. Choosing the class 4
for the query images, we set classes 9 (left-out class) and
1 (non-left-out class) as the target for the CF explanations.
As one might expect, the CFs for the left-out class are not
interpretable and meaningful which emphasizes the classi-
fier lacks knowledge regarding the target class. On the other
hand, when choosing the non-left-out class 1, the CF expla-
nations are intuitive and might be helpful to a user, whereas
GAN-type approaches such as CycleGAN will just con-
tinue to generate normal digits without using the classifier.
This is a simple scenario for understanding the weakness
of a classifier; however, it emphasises the substantial dif-
ferences between C3LT and methods such as CycleGAN.
While our method can explain any classifier, CycleGAN
and other GAN-type methods are not of use.

CycleGAN

t-shirt

sneaker

I=

coat

pullover

Figure 6. Visual comparison of C3LT and CycleGAN. This figure compares the CF examples generated by C3LT and CycleGAN on
MNIST and Fashion-MNIST datasets. CF examples obtained from CycleGAN are often blurry with scattered perturbation with respect to
the query image while the CF images from C3LT are more realistic, sharp, and close to the original query image.

Table 6. Quantitative Comparison of C3LT against CycleGAN. We compare the CF obtained from CycleGAN and our method in terms
of CF metrics. CF examples generated from C3LT are more realistic and have higher quality.In addition, the COUT score obtained in this
experiment shows that the C3LT generates more valid and sparse explanations than CycleGAN.

Mothod Metric ‘ CcouT ¢ ‘ IM1 | ‘ IM2 % 10 | ‘ FID] ‘ KID x 1e3 | ‘ Prozx | ‘ Val +
C3LT(ours) 0.948 | 0.70 0.36 22.83 13.39 0.072 | 0.999
Cycle-GAN [50] 0.894 | 0.716 0.49 43.4 41.61 0.089 | 0.988

Figure 7. Debugging a faulty Classifier. Here, we showcase the capability of C3LT in debugging a rigged classifier while methods such
as CycleGAN are not helpful. We choose images from class 4 as the query images (top row) and set the a) left-out b)non-left-out class as
the target for the CF examples (bottom row). While the CFs for the left-out class are not interpretable, the CFs for the non-left-out class
are intuitive. GAN-type approaches such as CycleGAN do not interpret different classifiers and would generate regular digits 9 and 1 in

either case, respectively.

E. Traversal in the Latent Space

”Does C3LT lead to disentangled transformations in
the latent space?”” Normal VAE/GANSs do not generate dis-
entangled latents. Fig. 8 is a violin plot showing the mean
absolute difference in latent dimensions between the orig-
inal and CF images, for three class pairs from MNIST. It
shows most latent dimensions are changed (with average
magnitude of 0.2). Note our main goal is to build a method
to generate realistic and high-resolution CF images for ex-
plaining classifiers, so sparsity of latent traversal is interest-

ing future work but orthogonal to this goal.

However, when steering from the input to the CF in the
latent space, we observe meaningful traversal. Fig. 9 illus-
trates this for (pullover, t-shirt) and (4, 9) class pairs with
n = 3 discrete steps (see Eq.1 in the paper).

F. Additional Visual Examples

In the following, we show more CFs generated from our
method and baselines for both MNIST and Fashion-MNIST
datasets.

—
[\

!/
X

—
o

e
o

o
=)

<
=~

Mean Absolute Difference |z — z

e
o

(4,9) (3,8) (5,6)
Class Pair

Figure 8. Mean absolute difference of the input and CF latent codes using C3LT for class pairs from MNIST. It can be observed the that
the learned transformations are not sparse.

Input CF
3 — —_—
: 5
:s* n=1 n=3 =

Figure 9. Traversal with n = 3 steps in the latent space of the generator going from the input to the CF example.

Query ExpGAN CEM CVE C3LT(ours) Query ExpGAN CEM CVE C3LT(ours)

g 494419
] [AEIEAE3E] -
3 277277

HaIA
% HEEEA -
% 5lB5 60N

slelgle ¢
? BEEEER
: BYEIENENEY
: EIFSEIEIE]

S

Figure 10. Visual Comparison of the CFs. This figure illustrated the generated CFs from C3LT, ExplainGAN, CEM, and CVE for both
MNIST and Fashion-MNIST datasets. For MNIST, we show the (3,8), (4,9), and (5,6) pairs. For Fashion-MNIST, the pairs are (t-shirt,
pullover), (coat, shirt), and (sneaker, ankle boot). It can be noted thatthe generated CFs from the CEM and CVE to be adversarial and off
the data manifold. Compared to the ExpGAN, the generated CFs from our method are consistently more realistic and interpretable.

